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Vision

To build a trusted, secure, and empowered digital future for all.

Mission

We are dedicated to building a trusted and secure online world  
that empowers you.

Where you can work, play, buy, sell, create and engage socially. 

Where you have safety and privacy in your digital communities. 

Where you are confident when interacting with others.

Where this digital future is available to all.

Hello future.
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Executive Summary

Distributed ledger technologies (DLT) have the potential to disrupt and transform existing markets in 
multiple industries. However, in our opinion there are five fundamental obstacles to overcome before 
distributed ledgers can be widely accepted and adopted by enterprises. In this paper we will examine 
these obstacles and discuss why Hedera Hashgraph is well-suited to support a vast array of applications 
and become the world’s first mass-adopted public distributed ledger.

1 .  P E R F O R M A N C E  - The most compelling use cases for DLT require hundreds of thousands 
of transactions per second, and many require consensus latency measured in seconds. 
These performance metrics are orders of magnitude beyond what current public DLT 
platforms can achieve.

2 .  S E C U R I T Y  - If public DLT platforms are to facilitate the transfer of trillions of dollars 
of value, they will be targeted by hackers, and so will need the strongest possible network 
security. Having the strongest possible security starts with the consensus algorithm 
itself, with its security properties formally proven mathematically. Security vulnerabilities 
and attack vectors shouldn’t be mitigated; they should be eliminated entirely. To improve 
performance metrics, some public DLT platforms are making compromises with regard to 
decentralization, and in so doing are potentially compromising security.

3 .  G O V E R N A N C E  - A general-purpose public ledger should be governed by representatives 
from a broad range of market and geographic sectors, each with world-class expertise. 
Those responsible for network governance need technical expertise so they can 
competently manage the platform’s underlying software. They need business and 
economics expertise so they can manage business operations of the organization and 
its cryptocurrency. They need legal expertise to help navigate the evolving regulatory 
environment. In other words, the network should be governed by a decentralized group of 
globally recognized industry leaders, representative of every market in the world.

4 .  STABILITY - Without technical and legal mechanisms to enforce the decisions of the 
governing body, public DLT platforms are at risk of devolving into chaos. Strong security and 
mature governance will enable a stable platform — one that engenders the necessary trust 
and confidence among those that would build commercial or sensitive applications on it.

5 .  R E G U L AT O R Y  C O M P L I A N C E  - We expect that governments will continue to extend 
policy objectives to users, enterprises, and developers utilizing  public ledgers and associated 
cryptocurrencies and tokens. We consider that a public distributed ledger must be capable 
of providing necessary tools for all members of its ecosystem to comply with applicable laws 
and regulations, such as the European Union’s General Data Privacy Regulations (GDPR), and 
enable appropriate identity management to conduct sanctions screening and facilitate Know 
Your Customer (KYC) and Anti Money Laundering (AML) checks.



4E X E C U T I V E  S U M M A R Y

What is required to move the DLT industry forward and enable 
it to realize its full potential?

A platform that provides a combination of high performance, 
strong security, effective governance, technical and legal 
controls to ensure the platform’s stability, and tools to enable 
regulatory compliance. Only then do we think mainstream 
markets will trust a DLT platform enough to adopt it.
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Introducing Hedera  — a public hashgraph network 
and governing body designed to address the needs  
of mainstream markets.

The Hedera network will be governed by a council of leading global enterprises, across multiple industries and 
geographies. Its vision is a cyberspace that is trusted and secure, without the need for centralized parties 
with inordinate influence. Its licensing and governance model protects users by eliminating the risk of forking, 
protecting the integrity of the codebase, and providing open access to review the underlying software code. 
Platform governance will be decentralized through the  Hedera Governing Council, which will have a term-
limited, rotating set of governing members that each have equal voting rights over key decisions relating to 
the platform.1 

The Hedera network is a distributed ledger platform that resolves the factors that constrain adoption of 
public DLT by the mainstream.

1 .  P E R F O R M A N C E  - The platform is built on the hashgraph distributed consensus algorithm, 
invented by Dr. Leemon Baird. The hashgraph consensus algorithm provides near-perfect 
efficiency in bandwidth usage and consequently can process hundreds of thousands of 
transactions per second in a single shard (a fully connected, peer-to-peer mesh of nodes in 
a network). Initially, we anticipate that the Hedera network will be able to process 10,000 
cryptocurrency transactions per second. Consensus latency is measured in seconds, not 
minutes, hours, or days..

2 .  S E C U R I T Y  - Hashgraph achieves the gold standard for security in the field of distributed 
consensus: asynchronous Byzantine Fault Tolerance (aBFT). Other platforms that use 
coordinators, leaders, or communication timeouts to improve performance tend to be 
vulnerable to Distributed Denial of Service (DDoS) attacks. Hashgraph is resilient to these 
types of attacks against the consensus algorithm because there is no such leader. Achieving 
this level of security at scale is a fundamental advance in the field of distributed systems.

Many applications require that the consensus order of transactions match the actual order in 
which the transactions are received by the network. It should not be possible for a single party 
to prevent the flow of transactions into the network, nor influence the order of transactions in 
the eventual network consensus. A fair consensus algorithm ensures that if a user can submit 
a transaction to the network at all, then the transaction will be received by the network and 
the order in which it was received will be a fair ordering. Hashgraph uniquely ensures that the 
actual order transactions are received by the network will be reflected in the consensus order. 
In other words, hashgraph ensures both Fair Access and Fair Ordering.

Formal proofs of the aBFT and fairness properties for the hashgraph consensus algorithm have 
been available for public review since June 2016. Furthermore, the hashgraph algorithm has been 
validated as aBFT by a math proof checked by computer using the Coq system in October 2018.2
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3 .  G O V E R N A N C E  - The Hedera network will be governed by a council of up to 39 leading 
global enterprises. Council members will bring needed experience in process and business 
expertise that has been absent in previous public ledger platforms. Council membership 
is designed (i) to reflect a range of industries and geographies, (ii) to have highly respected 
brands and trusted market positions, and (iii) to encompass competing perspectives.  
The terms of governance ensure that no single Council member will have control, and  
no small group of members will have undue influence over the body as a whole.

4 .  S TA B I L I T Y  - Hedera relies on both technical and legal controls to ensure the stability  
of the platform.

Hedera technical controls enable two capabilities.

i) First, the hashgraph technology ensures that software clients validate 
the pedigree of the Hedera hashgraph ledger prior to use through a 
shared state mechanism. It isn’t possible for a network node to fork the 
official version of the Hedera hashgraph platform, make changes, and then 
have those changes accepted as valid. If the original hashgraph platform 
and the copy are changed independently, software clients using the Hedera 
platform will know which is the valid version and which is not.

ii) Second, the hashgraph technology makes it possible for the Hedera 
Council to specify the software changes to be made to network nodes, 
precisely when those changes are to be adopted, and to confirm that they 
have been adopted. When the Hedera Council releases a software update, 
network nodes will have their software automatically updated at exactly 
the same moment. Any node with invalid software (i.e., one that didn’t install 
the software update) will no longer be able to modify the ledger or have the 
world accept their version of the ledger as legitimate.

Hedera legal controls ensure the platform will not fork into a competing platform and 
cryptocurrency. 

iii) The Hedera codebase will be governed by the Hedera Governing Council, and 
will be released for public review with Version 1.0, expected to be released in 
2020. It will not be open source, but anyone will be able to read the source code, 
recompile it, and verify that it is correct. No license will be required to use the 
Hedera platform. No license will be required to write software that uses the 
services of the Hedera platform. No license will be required to build smart 
contracts on top of the Hedera platform. Applications built upon the Hedera 
platform can be open source or proprietary. They do not require any license 
or any approval from Hedera. Hedera will make the code publicly available for 
anyone to review it (at Version 1.0), while ensuring stability by using hashgraph 
software patents defensively to prevent forks. In this way, Hedera will provide 
a transparent codebase that will provide the stability that markets demand 
for mainstream adoption of a public ledger.
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The combination of technical and legal controls provide the governing body with the mechanisms needed 
to enable meaningful governance, and to bring the stability that we think is required for broad-based 
adoption.

5 .  R E G U L AT O R Y  C O M P L I A N C E  – The Hedera technical framework includes controlled 
mutability of the network state and the potential to request or attach additional data to 
transactions, such as identity certificates. These features enable future functionality 
such as the erasure of personal data and other uploaded files and opt-in verified identity 
mechanisms – all optional and within the control of the end users.  We intend to work with 
regulators and encourage development of such tools to allow enterprises to fulfill their 
consumer protection and regulatory compliance obligations.

1  Swirlds, Inc. is a Delaware corporation that holds the patent titles to the hashgraph consensus algorithm. Swirlds is a permanent 
member of the Hedera Governing Council.

2  See Appendix 3 for a full definition of the hashgraph algorithm, including proofs of aBFT. Also see  https://www.hedera.com/blog/coq-
proof-completed-by-carnegie-mellon-professor-confirms-hashgraph-consensus-algorithm-is-asynchronous-byzantine-fault-tolerant 
for access to the formalized aBFT proof.

https://www.hedera.com/blog/coq-proof-completed-by-carnegie-mellon-professor-confirms-hashgraph-cons
https://www.hedera.com/blog/coq-proof-completed-by-carnegie-mellon-professor-confirms-hashgraph-cons
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Part 1
An introduction to
Hedera Hashgraph

I N T R O D U C T I O N
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The hashgraph data structure and consensus algorithm provides a 
new platform for distributed consensus. This introduction gives an 
overview of how hashgraph works, and some of its properties. 

The goal of a distributed consensus algorithm is to allow a community 
of users to come to an agreement on the order in which some of 
them generated transactions, when no single member is trusted 
by everyone. In this way, it is a system for generating trust, when 
individuals do not already trust each other. Hashgraph achieves this in 
a fundamentally new way.

A blockchain is like a tree that is continuously pruned as it grows – this pruning 
is necessary to keep the branches of blocks from growing out of control and to 
ensure the ledger consists of just one chain of blocks. In hashgraph, rather than 
pruning new growth, such growth is woven back into the body of the ledger.
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In both blockchain and hashgraph ledgers, any user can create a 
transaction, which will eventually be put into a container (the “block”) 
and will then spread throughout the distributed network. 

In blockchain, those “blocks” of containers are intended to form a 
single, long chain. If two blocks are created at the same time, the 
network nodes will eventually choose one chain to continue and discard 
the other one, lest the blockchain “fork” into two different chains. It is 
like a growing tree that is constantly having all but one of its branches 
chopped off. 

In hashgraph, every container of transactions is incorporated into the 
ledger—none are discarded—so it is more efficient than blockchains. 
All the branches continue to exist forever, and are woven together into 
a single whole.

Furthermore, blockchain fails if the new containers arrive too quickly, 
because new branches sprout faster than they can be pruned. That 
is why blockchain needs proof-of-work or some other mechanism 
to artificially slow down the growth. In hashgraph, though, nothing 
is thrown away. There is no harm in the hashgraph data structure 
growing quickly. Every member can create transactions and 
containers whenever they want. 

Finally, because the hashgraph does not require pruning of would-be 
“forks” (as every container of transactions is incorporated into the 
ledger), hashgraph allows more powerful mathematical guarantees, 
such as Byzantine agreement and fairness. Distributed databases 
such as Paxos are Byzantine, but do not guarantee fairness in the 
ordering of transactions. Blockchain is neither Byzantine nor fair. The 
hashgraph algorithm accomplishes being  fair, fast, Byzantine, ACID 
compliant, efficient, inexpensive, timestamped, and DoS resistant.
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Performance
C O S T

A hashgraph distributed ledger is inexpensive to operate compared to blockchain distributed ledgers, as 
it avoids energy-intensive proof-of-work. Individuals and organizations who will want to run  hashgraph 
nodes will not need to purchase expensive custom mining rigs. Instead, they will be able to run hashgraph 
nodes via readily available hardware that is less expensive than such specialized mining rigs.

E F F I C I E N C Y

The hashgraph is 100% efficient, as that term is used in the blockchain community. In blockchain, work is 
sometimes wasted mining a block that later is considered stale and is discarded by the network of nodes. 

In hashgraph, the equivalent of a “block” of transactions never becomes stale. Hashgraph is also efficient 
in its use of bandwidth. Whatever the amount of bandwidth required to inform all the nodes of a given 
transaction (even without achieving consensus on a timestamp for that transaction), hashgraph adds 
only a very small overhead of additional bandwidth to achieve a consensus timestamp and put the 
transactions into order. Additionally, the hashgraph voting algorithm does not require any additional 
messages be sent in order for nodes to vote on validating transactions (or those votes to be counted) 
beyond those messages by which the network nodes learned of the transaction itself.

T H R O U G H P U T

The hashgraph is fast. It is limited only by the bandwidth. If each network node has enough bandwidth to 
download and upload a given number of transactions per second, the network as a whole can handle close 
to that many transactions per second. Even a fast home internet connection could enable a hashgraph 
node to be fast enough to handle transaction volume equal to that of the entire global VISA card network.
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T H E  F O L L O W I N G  C H A R T S  G I V E  P E R F O R M A N C E  R E S U LT S  F O R  H A S H G R A P H  T E C H N O L O G Y  

U N D E R  T E S T  C O N D I T I O N S .

The charts on the previous pages show the results of tests performed using hashgraph nodes hosted 
by Amazon AWS m4.4xlarge instances. Figure 1 shows performance for a single region (Virginia), Figure 
2 shows results for two regions 2,000 miles apart on opposite sides of the continental United States 
(Virginia and Oregon), and  Figure 3 shows results for 8 regions (Virginia, Oregon, Canada, Sao Paulo, 
Australia, Seoul, Tokyo, and Frankfurt).

Each line on the chart is for a different number of instances (computers), which is shown to the right of 
the line. In every case, the instances were distributed evenly across the number of regions being used.

The horizontal axis is the number of 100-byte transactions per second for which the ledger achieved 
consensus. In these experiments, this throughput ranges from less than 50,000 tps up to almost 500,000 
tps. On most of the lines, the second dot from the left is 10,000 tps. 

The vertical axis is the average number of seconds from when a node first creates a transaction until 
it knows the exact consensus order and consensus timestamp for it. This isn’t just a time to a first 
confirmation—it is the time until a 100% certain finality is reached.

In all of the experiments, this latency was under 11 seconds. And various experiments had latencies down 
to less than 0.04 seconds.

In the graphs, there are clear tradeoffs between throughput, latency, number of computers, and 
geographic distribution. For 32 computers running at 50,000 transactions per second, consensus finality 
is reached in 3 seconds when the network is spread across 8 regions spanning the globe. When the 
network stretches only 2,000 miles across the U.S., this drops to 1.5 seconds. In a single region, it drops to 
0.75 seconds.

If it is desired to keep the latency under the 7 seconds required by credit cards, while still achieving 
200,000 transactions per second, it is possible to use 32 computers in eight regions, or use 64 computers 
in two regions, or use 128 computers in one region. 

It is important to note that these tests are purely for achieving consensus on transaction order and 
timestamps. They do not include the time to process transactions. For example, if every transaction is 
digitally signed, then these results suggest that a great deal of processing power might be needed to 
verify hundreds of thousands of digital signatures per second. It is possible that GPU implementations 
could be helpful. 

In addition, if a transaction is a request to store a large file, then bandwidth limitations would slow down 
the network’s ability to process that transaction. Network pricing for file storage transactions will be 
structured to make it relatively expensive to store large files on the ledger, which should disincentivize any 
efforts to slow down the network in this way. 
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S TAT E  E F F I C I E N C Y

Once a network transaction occurs, within seconds all nodes in the network will know where that transaction 
should be placed in history of transactions with 100% certainty. More importantly, every node will know 
that every other node knows this. At that point, the network can just incorporate the effects of the 
transaction and, unless needed for future audit or compliance, discard the transaction data. So, in a minimal 
cryptocurrency system, each node would only need to store the current balance of each network account 
that is not empty. The nodes would not need to remember the full history of the transactions that resulted in 
those balances all the way back to ‘genesis’.

P E R F O R M A N C E
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Security
C R Y P T O G R A P H Y

All Hedera network communications are encrypted with TLS 1.2, all transactions are digitally signed, and 
the hashgraph is constructed using cryptographic hashes. All the algorithms and key sizes were chosen 
to be compliant with the CNSA Suite security standard. This is the standard required for protecting U.S. 
government Top Secret information. It specifies using AES-256, RSA 3072, SHA-384, and ECDSA and 
ECDH with p-384 and using ephemeral keys for perfect forward secrecy.

A S Y N C H R O N O U S  B Y Z A N T I N E  FA U LT  T O L E R A N C E

The hashgraph algorithm is asynchronous Byzantine Fault Tolerant (aBFT). This is a technical term meaning 
that no single node (or small group of nodes) can prevent the  network from reaching consensus, nor can they 
change the consensus once it has been reached. Each Hedera network node will eventually reach a point where 
it  “knows” for sure that the network has reached consensus. Blockchain platforms do not have a guarantee 
of Byzantine agreement, because a node never reaches certainty that agreement has been achieved (there is 
just a probability that increases over time). Blockchain is also non-Byzantine because it does not automatically 
deal with network partitions— i.e., if a group of miners is isolated from the rest of the internet, multiple chains 
(“forks”) could grow that conflict with each other on the order of transactions. 

It is worth noting that the term “Byzantine Fault Tolerant” (BFT) is sometimes used in a weaker sense of 
resistance to malicious behavior by other consensus algorithms. We use it in its original, stronger sense in that 
even if we assume (1) some attackers will collude to stop or skew consensus and (2) that some attackers could 
even control the internet itself (with some limits) and slow or prevent the delivery of messages, the network 
will eventually reach consensus and every node eventually knows consensus has been reached. Hashgraph is 
Byzantine, even by this stronger definition. So long as an attacker has less than 1/3 of the total stake of hbars, 
they will be unable to stop consensus or even skew transaction timestamps or consensus order.

There are different degrees of BFT, depending on the assumptions made about the network and transmission 
of messages. 

The strongest form of BFT is asynchronous BFT — meaning that the network can achieve consensus even 
if malicious actors are able to control the network and delete or slow down messages of their choosing. The 
only assumptions made are that more than ⅔ are following the protocol correctly, and that if messages are 
repeatedly sent from one node to another over the internet, eventually one will get through, and then eventually 
another will, and so on. Some systems are partially asynchronous, which are secure only if the attackers do 
not have too much power and do not manipulate the timing of messages too much. For instance, a partially 
asynchronous system could prove Byzantine under the assumption that messages get passed over the 
internet in ten seconds. However, this assumption ignores the reality of botnets, Distributed Denial of Service 
attacks, and malicious firewalls.

A full technical report describing the hashgraph data structure and algorithm, including mathematical proofs 
that Hashgraph is asynchronous BFT, is included in the Appendix.
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A C I D  C O M P L I A N C E

The hashgraph is ACID compliant. ACID (Atomicity, Consistency, Isolation, Durability) is a database term, 
and applies to the hashgraph when it is used as a distributed database. A network of nodes use it to reach 
a consensus on the order in which transactions occurred. After reaching consensus, each node feeds 
those transactions to that node’s local copy of the database, sending each one in the consensus order. If 
the local database has all the standard properties of a database (ACID), then the network as a whole can 
be said to have a single, distributed database with those same properties. In blockchain, there is never a 
moment when you know that consensus has been reached, so it would not be ACID compliant

D I S T R I B U T E D  D E N I A L  O F  S E R V I C E  AT TA C K  R E S I L I E N C E

One form of Denial of Service (DoS) attack occurs when an attacker is able to flood an honest node on a 
network with meaningless messages, preventing that node from performing other (valid) duties and roles. 
A Distributed Denial of Service (DDoS) uses public services or devices to unwittingly amplify that DoS 
attack—making them an even greater threat.

In a DLT network, a DDoS attack could target the nodes that contribute to the definition of consensus 
and, potentially, prevent that consensus from being established.

The hashgraph is DDoS resilient as it empowers no single node or small number of nodes with special 
rights or responsibilities in establishing consensus. Both Bitcoin and hashgraph are distributed in a 
way that resists DDoS attacks. An attacker might flood one node or miner with packets of data to 
temporarily disconnect it from the internet. But the network as a whole will continue to operate normally. 
An attack on the system as a whole would require flooding a large fraction of the nodes with packets, 
which is more difficult. There have been a number of proposed alternatives to blockchain based on 
“leaders” or “round robin” models. These have been proposed to avoid the proof-of-work costs of Bitcoin, 
but they have the drawback of being sensitive to DDoS attacks. If the attacker attacks the current leader 
node, and switches to attacking the new leader as soon as one is chosen, then the attacker can freeze 
the entire system while still attacking only one node at a time. Hashgraph avoids this problem, while still 
avoiding the energy requirements of proof-of-work.

.

S E C U R I T Y
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Fairness
Hashgraph is fair because there is no leader node or miner given special permissions for determining the 
consensus timestamp assigned to a transaction. Instead, the consensus timestamps for transactions 
are calculated via an automated voting process in the algorithm through which the nodes collectively and 
democratically establish the consensus. We can distinguish between three aspects of fairness.

FA I R  A C C E S S

Hashgraph is fundamentally fair because no individual node can stop a transaction from entering the 
system, or even delay it very much. If one or a few malicious nodes attempt to prevent a given transaction 
from being delivered to the rest of the network and so be added into consensus, the random nature of the 
hashgraph gossip protocol through which nodes communicate messages to each other will ensure that 
the transaction flows around that blockage.

FA I R  T I M E S TA M P S

Hashgraph gives each transaction a consensus timestamp that is based on when the majority of the 
network nodes received that transaction. This consensus timestamp is fair, because it is not possible for a 
malicious node to corrupt it and make it differ by very much from that time. Every transaction is assigned 
a consensus time, which is the median of the times at which each node says it first received it. Received 
here refers to the time that a given node was first passed the transaction from another node through 
gossip. This is part of the consensus, and so has all the guarantees of being Byzantine. If more than two-
thirds of participating nodes are honest and have reliable clocks on their computer, then the timestamp 
itself will be honest and reliable, because it is generated by an honest and reliable node or falls between 
two times that were generated by honest and reliable nodes. Because hashgraph takes the median of all 
these times, the consensus timestamp is robust. Even if a few of the clocks are a bit off, or even if a few of 
the nodes maliciously give times that are far off, the consensus timestamp is not significantly impacted.

This consensus timestamping is useful for things such as a legal obligation to perform some action 
by a particular time. There will be a consensus on whether an event happened by a deadline, and the 
timestamp is resistant to manipulation by an attacker. In blockchain, each block contains a timestamp, 
but it reflects only a single clock: the one on the computer of the miner who mined that block.

FA I R  T R A N S A C T I O N  O R D E R

Transactions are put into order according to their timestamps. Because the timestamps assigned to 
individual transactions are fair, so is the resulting order. This is critically important for some use cases. 
For example, imagine a stock market, where Alice and Bob both try to buy the last available share of a 
stock at the same moment for the same price. In blockchain, a miner might put both of those transactions 
in a single block and have complete freedom to choose in what order they occur. Or the miner might 
choose to only include Alice’s transaction, and delay Bob’s to a future block. In hashgraph, there is no way 
for an individual node to unduly affect the consensus order of those transactions. The best Alice can do 
is to invest in a better internet connection so that her transaction reaches everyone before Bob’s. That’s 
the fair way to compete.
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Governance
A governance model for a public ledger will define the rules and policies that control the evolution of the 
node software, issuance of coins, and the reward model that incentivizes network participants. There 
are multiple stakeholders whose interests and motivations must be balanced: network node operators, 
developers building applications on the platform, businesses relying on those applications, end-users of 
those applications, and relevant regulatory bodies.

The Hedera Governing Council is a limited liability company that will have up to 39 members, who will be 
well-known enterprises from diverse industries and geographies. Hedera’s licensing and governance model 
protects network users by eliminating the risk of forks, guaranteeing the integrity of the codebase, and 
providing open access to review the underlying software code. Under the governance model, all Governing 
Members will have equal voting rights and each Governing Member (with the exception of Swirlds) will 
serve a limited term, ensuring that no single Governing Member or group of Governing Members has 
centralized control.

The Hedera network has a model of permissioned governance with a phased plan for permissionless or 
open consensus. 

Governance is permissioned in that governance decisions are made by the members of the Hedera 
Governing Council. The Council establishes policy for Council membership, sets the network rules, manages 
the platform’s treasury of coins, and approves changes to the platform codebase. Our governance model 
is based on the original model used by National BankAmericard Inc., founded in 1968, which was later 
renamed VISA. We are designing our governance model in a way that ensures the Governing Members 
can be trusted to do what is in the best interest of the Hedera platform, and not be unduly influenced by 
individual Council members or node operators.  In addition to Governing Members, Hedera expects to have 
participating organizations contribute to the Hedera network ecosystem by providing advisory services as 
appropriate, but such organizations will not have voting privileges.

The open consensus model relates to the process by which the nodes join the network and reach a 
consensus on the order of transactions in the platform. The model is designed to prevent consolidation of 
power over consensus by encouraging the emergence of a decentralized network with, eventually, millions 
of nodes. It prevents collusion by a few to attack the system such as by counterfeiting the cryptocurrency, 
modifying the ledger inappropriately, or influencing the consensus order of transactions. We inhibit 
collusion by weighting the votes within the hashgraph algorithm of a particular node based on the node’s 
stake of coins. Loosely stated, each node casts one vote for each coin of the Hedera native currency 
(hbars) it owns. Initially, all of the nodes in the Hedera network will be operated by Council members, 
so consensus will start on a permissioned basis. As network use grows, the Council will allow new node 
operators to join the network and be paid for their services in maintaining the hashgraph. The number of 
nodes is expected to grow large over time, ensuring consensus voting privileges are distributed to many 
nodes. A full discussion of the staking model is included in the section below.

This system of permissioned governance with open consensus will build more public trust than purely 
closed system. This is essential to the success of a global DLT platform.
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P E R M I S S I O N E D  G O V E R N A N C E

We designed the Hedera governance model to ensure that the Council can be trusted to govern the 
network fairly. Council members will have equal governing rights and limited terms, ensuring that 
governance is decentralized. Deliberation and debate will be open to all Council members and controlled by 
none.

The Governing Members will also participate in committees that provide oversight of Hedera operations. 
Committees will include but are not limited to a Technical Steering & Product Committee, a Finance 
Committee, and a Legal & Regulatory Committee. The Governing Members are organizations that span 
a broad range of business sectors, and our objective is that, collectively, the membership will contribute 
industry-leading representation to the range of Hedera committees. 
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Stability
The hard forks that Bitcoin and Ethereum have experienced have arguably damaged the network effect 
of their corresponding currencies, creating confusion and uncertainty in the marketplace. Similarly, 
the explosion of altcoins (and the dubious legitimacy and value of many of them) does not engender the 
necessary confidence in businesses and consumers considering adopting cryptocurrencies.

Historically, open source software developers have recognized the value of maintaining a single baseline 
of code and ensuring that the best ideas from the community are included for the benefit of the whole. 
However, when combining an open source project with a cryptocurrency, the traditional incentive 
structure is turned upside down. The distributed ledger technologies that have been most widely adopted 
are also those that have split the most. This dynamic causes chaos in the industry, and directly impedes 
the adoption of public ledgers by mainstream markets. 

Hedera technical and legal controls ensure the platform will not fork into a competing platform and 
cryptocurrency.
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Technical controls

S I G N E D  S TAT E  P R O O F S

All nodes maintain a copy of the state. For instance, each node knows the balances of all network 
participants’ crypto accounts. At the end of each round of the algorithm, each node calculates the new 
state by processing all transactions that were received in that round and before. Each node then digitally 
signs a hash of that shared state, puts it in a transaction, and gossips it out to the network. Then it 
collects those signatures from all other nodes.

When a client requests some aspect of the state, all nodes will be able to construct and return a small 
file carrying the collected signatures and other cryptographic material to prove to the client (or another 
party) that the returned data is indeed the true, consensus state.

The state is organized as a Merkle tree, so a third party can be given a proof that consists of a small part 
of the state, plus the path from there to the root of the Merkle tree (including siblings of those vertices in 
the tree), plus the signatures, and an address book history for the public keys.

The diagram below represents how a third party will be confident that the state it receives from one of 
the nodes does indeed represent the consensus state of the full network.
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L E D G E R  I D

The proof will also include an “address book”, which is a list of the public keys of all the nodes, along with each node’s stake. A 
third party will need this address book in order to check the signatures on the state (or portion of the state).

The proof must also include an “address book history”. This is a sequence of address books, where each address book is 
signed by nodes from the previous address book. Any given address book must be signed by a set of nodes that control more 
than 2/3 of the stake of the platform’s coins, according to the network’s list of nodes and their stake from the previous 
address book. This chain of address books extends back to the genesis address book, which was signed by the initial nodes 
who created the ledger.

The hash of the genesis address book is important. It serves as a unique identifier of the ledger. It is the “name” of the ledger.

H A N D L I N G  F O R K S

If a small number of nodes want to split off from the network and create a new ledger that is a fork of the current one, 
they have the technical ability to do so, and can even create the initial state of their new ledger to be identical to the 
old ledger. So it is a fork. However, they will not be able to create an address book history reaching back to the genesis 
address book, with the nodes of each address book signing the next one, because the majority of nodes (who are not 
forking) will not sign the address book for the minority of nodes who are forking. This forces the new fork to have a new 
genesis address book, and therefore a new unique identifier, and therefore a new name. Consequently, those creating 
the fork will be unable to fool anybody into thinking the fork is the legitimate ledger.

When a client submits a transaction to a node to send to the ledger, the client will receive in response from the 
node the cryptographic proof that their transaction has affected the shared state correctly. When Alice transfers 
cryptocurrency to Bob, both of them will be able to receive a cryptographic proof that the transaction succeeded. 
This proof includes the signatures reaching back to the genesis address book. So they not only verify that the transfer 
occurred, they verify that it occurred on the correct ledger. If a ledger forks, no client will ever be confused about which 
ledger they are dealing with because only one ledger at a time can have that name.

Furthermore, if the network’s stake of hbars were to split 50/50 between two groups of nodes, neither group of 
nodes would be able to prove a connection to the genesis address book. It wouldn’t be a fork; it would be the complete 
destruction of one ledger, and the creation of two new ledgers. This would greatly reduce the value of the ledger to the 
nodes, because they would no longer be able to earn fees from the clients who want to access the original ledger. And 
all of the original cryptocurrency would, in a very real sense, cease to exist. This creates an enormous disincentive to 
forking.

In this way, it is impossible to effectively create a deceptive fork of the Hedera ledger that would confuse users. Even 
if dishonest nodes create a forked copy of the Hedera ledger in order to try to deceive users into thinking the copy is 
the legitimate ledger, users would know that ledger isn’t valid because those nodes hosting the illegitimate fork would 
not be able to provide a valid state proof. And there is little incentive for nodes to openly create a forked copy, because 
there is unlikely to be much demand from users to shift to using an invalid version. So there are strong incentives to 
avoid forks, even aside from any legal incentives.

The cryptographic proofs and unique identifiers that prevent forks are also critically important for secure sharding. 
They allow shards to send each other messages, with assurance that the message from a given shard was truly the 
consensus of that shard.
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Legal Controls and Transparency

The Hedera codebase will be governed by the Hedera Governing Council. Version 1.0 of the codebase, 
which is expected in 2020, will be “open review,” meaning that anyone will be able to read the source code, 
recompile it, and verify that it is correct. 

No license will be required to use the Hedera platform. No license will be required to write software that 
uses the services of the Hedera platform. No license will be required to build smart contracts on top of 
the Hedera platform. Applications built upon the Hedera platform can be open source or proprietary. 
They do not require any license or any approval from Hedera. Software developed using the platform APIs 
will not be encumbered in any way. Software developers will have complete ownership and discretion on 
the licensing they choose for their applications that use the Hedera platform.

Swirlds owns the intellectual property rights in the hashgraph consensus algorithm. Hedera Governing 
Council has a license from Swirlds to use the hashgraph consensus algorithm and associated technology 
for the Hedera distributed public ledger platform. In exchange for that license, the Hedera Governing 
Council will pay Swirlds 10% of network revenue (with monthly minimums) and Swirlds will own 5% of 
Hedera coins. Swirlds will continue to require licenses for use of the hashgraph technology in private, 
permissioned networks, but no license will be required for distributed applications that run on Hedera’s 
public platform. Hedera and Swirlds will use the patent rights associated with the hashgraph algorithm 
defensively to legally prohibit the forking of the codebase and the creation of a competing platform 
and currency. Developers are free to build distributed applications on top of the Hedera platform with 
associated native tokens. 

In summary, Hedera will simultaneously embrace open review of the software code, while bringing 
stability to the platform and cryptocurrency by controlling the license. In this way, Hedera will provide a 
transparent codebase that will provide the stability that markets demand for mainstream adoption..
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Regulatory Compliance
We expect that governments will continue to extend policy objectives to users, enterprises, and developers 
utilizing public ledgers and associated cryptocurrencies and tokens. We consider it a fundamental goal 
that the Hedera network can provide necessary tools for all members of its ecosystem to comply with 
applicable laws and regulations, including existing regimes such as the European Union’s General Data 
Privacy Regulations (GDPR) and anti-money laundering (AML) obligations. We will continue to work with 
regulators to enable compliance with new and changing laws and regulations as well. The sections below 
outline some of the key elements of the Hedera network that allow for a path to regulatory compliance. 

S E L F - C U S T O D Y

Just like with most other distributed ledgers, all transactions that affect the state of a Hedera account 
must be signed by the account’s private key. This enables end users who retain possession of their 
private key to have sole control over their accounts and never relinquish custody of any funds to Hedera, 
developers, or enterprises. Even cryptocurrency transactions are completely peer-to-peer without 
intermediaries taking possession of hbars. Developers can either design and build wallets and applications 
on the Hedera network that utilize self-custody of private keys and funds or choose to host the private 
keys of their users and comply with the regulatory obligations arising from such custodial relationship.

D ATA  S E L F - S O V R E I G N I T Y

Unlike most other distributed ledgers, the Hedera network implements controlled mutability. When data 
is published on the Hedera network the publisher can define an authorization policy for future deletion 
and/or modification by specifying which keys have those authorizations. This allows developers to build 
applications that can comply with the “right to erasure” requirement under the GDPR or allow its users to 
maintain full control of which data is public and for how long.

P R I V A C Y  M A N A G E M E N T

The Hedera network also allows users to manage their own identities and transaction requirements. By 
default, accounts are pseudonymous, like most other distributed ledgers. However, the Hedera technology 
framework can support future implementations that allow users to attach their real identity (as asserted 
by an accredited party acting as a Certificate Authority) to be logically bound to their ledger account so 
that, when using that account to move funds, appropriate KYC checks can be performed  A counterparty 
could choose to require full proof of identity (including full legal name) or specific identity characteristics 
(such as age) consistent with their compliance program in order to accept a transaction on the network.  
User remain in control of their personal information and whether to provide proof of identity or 
characteristics to a counterparty; the counterparty remains in control of meeting compliance obligations 
before engaging in a transaction. 

The system is opt-in, in that a user must explicitly choose to avail themselves of the mechanism and, if 
they do not, their account transactions will remain pseudonymous. This choice however may prevent them 
from engaging in certain financial transactions.
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The system is designed to provide the appropriate balance of:  
1. Government visibility  
2. Security  
3. User privacy

Comparable to showing a driver’s license when creating a new bank account, the model has a user attach 
a hash of a digital certificate created by a recognized identity provider to their account. This attachment 
will take the form of a transaction sent out to the network.

This transaction: 
1. May need to be signed by both the user’s private key and that of the identity provider 
2. Can stipulate what parties are authorized to subsequently detach the hash (and so revoke the   
                 binding between the identity and the account).

As long as the attachment between account and certificate has not been revoked, by either the user 
or the identity provider, it can be used to establish that the account is bound to a known user whenever 
funds move in or out of that account. If and when appropriate, the identity provider can revoke the binding 
simply by sending a signed transaction to the network. 

As an example of how it might work, consider a user trying to send money from their Hedera account to 
a US bank. The user would provide to the bank the certificate as well as their account address. The bank 
would look up the account and confirm that the account had the corresponding hash for the certificate, 
and that the certificate was issued by a trusted identity provider. Only if all these checks were confirmed 
would the bank authorize the transaction and accept the funds. The bank might be asked by the 
corresponding government to send the certificate and transaction details, either in real-time (perhaps 
based on the amount of the transfer) or on a schedule

A N T I - M O N E Y  L A U N D E R I N G

Some developers and enterprises utilizing the Hedera network may have anti-money laundering reporting 
obligations. For such entities, on-network identity certificates and the use of network data from mirror 
nodes could form the basis of a compliance program. Mirror nodes, as discussed in more depth below, 
will eventually be able to run by anyone and serve as “read-only” observers of network activity. With such 
mirror nodes, all public data on the network will be able to be viewed, stored and analyzed to conduct 
investigations and flag suspicious behavior.  

Hedera is a founding member of the Distributed Ledger Foundation and will work with the broader DLT 
community and governments to ensure that regulatory requirements can be satisfied, while maintaining 
privacy and security.

Hedera directly resolves the five fundamental obstacles to mainstream market adoption of public ledger 
technology: Performance, Security, Stability, Governance, and Regulatory Compliance. The hashgraph 
data structure and consensus algorithm provide a best-in-class, unmatched combination of performance 
and security.  The Hedera platform and Hedera Governing Council will provide transparency, open 
innovation, platform stability, tools to enable opt-in KYC and AML and global, cross-industry expertise to 
provide governance and decision making for a globally distributed network and cryptocurrency.
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Part 2
Architecture

A R C H I T E C T U R E
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I N T E R N E T  L AY E R

The Hedera network nodes are all computers on the internet, communicating by TCP/IP connections 
protected by TLS encryption with ephemeral keys for perfect forward secrecy. Nodes are addressed by 
IP address and port, rather than by symbolic names, so attacks on the DNS system will not affect the 
network.

H A S H G R A P H  C O N S E N S U S  L AY E R

The nodes take transactions from clients and share them throughout the network with a gossip protocol. 
Then all nodes run the hashgraph consensus algorithm to reach agreement on a consensus timestamp 
for each transaction and its consensus order in history. Each node then applies the effects of the 
transactions in consensus order to modify its copy of the shared state. In this way, all nodes maintain an 
identical consensus state (within any given shard).

S E R V I C E S  L AY E R

C R Y P T O C U R R E N C Y

The cryptocurrency is designed to be fast, which leads to low network fees, making very 
small microtransactions practical. When the Hedera platform is running at scale, any user 
will be able to run a node in the network and earn cryptocurrency payments for doing so. 
Any user will be able to create an account by simply creating a key pair, without any name 
or address attached to it. Optionally, provisions are made to allow a user to attach hashes 
of identity certificates. These could come from any third-party certificate authority or 
identity authority that the user chooses. This is intended to allow regulatory compliance, 
for cryptocurrency accounts that will be used in a jurisdiction with Know Your Customer 
(KYC) or Anti-Money Laundering (AML) laws. More detail is given in the Regulatory 
Compliance section.

F I L E  S T O R A G E

The file system allows users to store information, with consensus on exactly what is stored 
and what is not stored. Every node in the shard stores the same files, so they will not be 
lost if one of the nodes crashes. Stored information can only be deleted by those that 
were given permission. In this way, the file system can act as a revocation service. For 
example, in the future, a user might be issued a driver’s license from the Department of 
Motor Vehicles (DMV), and both the user and the DMV digitally sign the transaction that 
puts a hash of it into the ledger. Both have the right to remove the hash of the license. The 
user can choose to prove to someone that they have a valid license, by giving that person 
a copy of the license file, so the person can check whether the hash is still stored in the 
ledger. If the DMV revokes the license, it would also delete the hash, to show the world that 
the license is no longer valid. If the user tries to store the hash again, without a signature 
from the DMV, it will be evident that the hash was stored only by the user without DMV 
cooperation, and would not be considered valid evidence of the user’s right to drive. 

A R C H I T E C T U R E
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Files are actually stored as Merkle trees, but we provide Java classes to allow developers 
to manipulate them.

We give developers Java code to manipulate a Merkle tree as if it were a file system.  
They see directories, subdirectories, files, and they can change the contents of files, and 
names of directories, and move things around, and copy and paste, and yet, underneath, it’s 
all being stored as a Merkle tree automatically. This allows us to give proofs that a file is part 
of the consensus state. Also, users can store an entire directory in the Hedera file system.

We not only store Merkle trees, we store Merkle DAGs, which means that if two files have 
some bytes in common, we might only store one copy of the common bytes.

A file can be accessed by its hash, so people can rely on the fact that it is immutable.  
But it also has a File ID. Its owner can create a new file, and make the File ID to be 
associated with the new file instead of the old one. In this way, it is possible for users to 
always find the latest version of a file. They just access the File ID instead of the hash.  
So files are both securely immutable and securely non-immutable, at the same time.  
If a file is accessed by its hash, then it never changes. If it is accessed by its File ID,  
then the latest version is found.

S M A R T  C O N T R A C T S

The Hedera ledger can run smart contracts written in Solidity. There currently exist  
large libraries of Solidity smart contract code, which can be run unchanged on Hedera. 
These allow for distributed applications to be easily built on top of Hedera.

C O N S E N S U S

The Hedera Consensus Service will offer an efficient alternative to smart contracts and 
the file system for building distributed applications. Clients submit messages to Hedera 
for time-stamping and ordering within specific topics. These ordered messages will flow 
out to mirror nodes or clients of mirror nodes for processing in the consensus order. The 
consensus service will give distributed applications direct access to the native speed, 
security, and fair ordering guarantees of the hashgraph consensus algorithm, with the 
full trust of the Hedera ledger. Full details on the Hedera platform’s consensus service, 
which will not be available initially but in added in a subsequent phase of the platform’s 
development, are available in Appendix 2.
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Mirror network
The Hedera imrror network is a set of nodes that will maintain all of the same requirements and most of 
the functionality of the main Hedera network The primary difference in functionality is that mirror nodes 
do not have the ability to submit transactions to be incorporated into the network’s ledger. Mirror nodes 
will gossip, and will calculate consensus and verify signatures, but because they are unable to create 
events, mirror nodes have no effect on the hashgraph structure, therefore they have no ability to submit 
transactions for consensus and no voting power. Mirror nodes can be thought of as “read-only” nodes 
in that transactions cannot be submitted to a mirror node via the Hedera API. Mirror nodes are free to 
develop additional APIs for providing new kinds of services that they create. 

The mirror network will provide an efficient way to get the state of the ledger out to many more users and 
dApps in a short period of time without having a major impact on the performance of the main network. 
So dApps may choose to host their own mirror nodes to listen to transactions on the main network and 
respond accordingly. For example, a dApp that deploys a smart contract may choose to host a mirror 
node, listen for events from its smart contract, filter out other transactions, and respond accordingly.
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Sharding

Initially, the Hedera network will be a small number of nodes operated by Governing Council Members, all in 
a single shard. As the Hedera Governing Council grows and others begin to operate nodes, the network will 
gain a sufficient number of nodes to justify multiple shards. Sharding can offer performance advantages 
as every node need not process every transaction. Consensus can consequently proceed in parallel. Shards 
will trust each other, so one shard will honor requests to move cryptocurrency or to put a hold on various 
resources made by another shard - as long as those requests can be proven to reflect the consensus of the 
requesting shard. This will allow the multi-shard ledger as a whole to achieve asynchronous Byzantine fault 
tolerance, and to prevent double spends or other conflicting states of the ledger, because each individual 
shard will have those properties, and because all messages between them will contain proofs that they are 
the consensus of that shard.

The plan is that nodes will be randomly grouped into different shards, within which consensus on 
transactions will be established as normal. Each shard will be made up of a subset of the nodes, all of which 
share the same state, which will be a subset of the state of the entire ledger. Transactions will be placed 
into consensus order within individual shards in the normal manner — all nodes within a shard will contribute 
only to the consensus for transactions that originate in that shard. The assignment of nodes to shards 
will be performed randomly by a master shard, which will assign new nodes to a shard once a day, and also 
will move nodes between shards as necessary to ensure that each shard has a large total amount of hbars 
being staked, and that no one node within a shard will have a large fraction of that total amount.

Shards will communicate through the exchange of messages between nodes of the different shards. 

All such messages are push (rather than pull). Each shard (its nodes) will maintain a queue of outgoing 
messages to each of the other shards. Each shard will remember the sequence number of the last message 
it processed from each of the other shards. A message will be sent from shard Alpha to shard Beta by nodes 
in Alpha randomly contacting nodes in Beta, to transfer the message, along with a proof that it is part of 
the consensus state of the Alpha shard. They will continue doing this until one of the Beta nodes replies 
with a proof that the Beta shard shared state includes a sequence number indicating that this message 
was received and processed. In this manner, transactions that impact addresses in different shards will be 
appropriately recorded into each shard’s state, and so into the entire state of the entire ledger.

More details are given in the Sharding appendix.
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Part 3
Cryptoeconomics

C R Y P T O E C O N O M I C S



3 5C R Y P T O E C O N O M I C S

Staking and proxy staking
The Hedera ledger uses a proof-of-stake consensus mechanism, in which each node’s influence on 
consensus is proportional to the amount of cryptocurrency it has staked to it. A transaction is validated 
and placed into consensus after it is validated by nodes representing an aggregate stake of over two-
thirds of the network’s total number of hbars (the number of hbars is fixed at 50 billion).It important to 
ensure that most of the cryptocurrency is actually being staked, so that the network continues to run.  
In the initial phase of the network, the Hedera Treasury will “proxy-stake” over two-thirds of the total 
number of hbars to nodes hosted by Council Members. 

After hbars become more widely distributed (so that no single user or group of users could attain control 
of one-third of all hbars), the network will allow anyone to host a node (i.e., it will be a permissionless 
network).  At that time, when a node joins the network, it must declare one or more accounts that it can 
control, and prove that it has the private keys for those accounts. From then on, the amount of hbars in 
those accounts will be used to weight its votes in the hashgraph virtual voting algorithm. Additionally, it 
will be paid to serve as a node, with that payment proportional to the amount of hbars in those accounts. 
It is still free to spend those hbars at any time. Consequently, a potential disincentive of bonded proof-of-
stake models—that of nodes unwilling to stake for fear of the associated loss of liquidity—is avoided.

In addition, a mechanism called “proxy staking” will allow a person who owns hbars but does not run a 
node to nevertheless stake those hbars and earn a small amount of hbars  for contributing to network 
operation by “proxy staking” their account to a node. That means giving another account credit for 
their hbars and allowing the node to use that stake when it contributes to consensus. The payments for 
running the node (proportional to the amount staked) are then split between the node and the owner of 
the hbars being proxy staked. The hbars that are being proxy staked still remain under the control of their 
owner. The owner will be able to turn off or redirect the proxy staking to another node at any time. They 
will also be able to spend the proxy staked hbars at any time, though again that will reduce the amount 
they receive in payment for staking. Note that the node to which the hbars are proxy staked cannot spend 
those hbars. This proxy-staking feature for network users will not be available initially, and will be added 
in a subsequent phase of the platform’s development. 

A node must have at least some hbars in its account for it to be able to influence consensus or to pay fees 
associated with sending transactions to the ledger.
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The proxy staking model is shown below. 
A node’s stake towards consensus will 
reflect both the hbars it owns and has 
staked and those hbars proxied to it. 
The payments associated with that 
staking will be shared between the node 
and those proxy staking accounts. In 
practice, a node is expected to have 
many accounts proxying their stake to it.

Proxy staking will allow those who do not run nodes to still be able to earn a small amount of hbars by 
contributing the weight of their hbars to a node’s vote  and, by encouraging this practice, will raise the bar 
for some actor being able to gain influence over a third of the entire stake. And those who do run nodes 
will be able to increase their revenue. 
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Payments and fees
Users pay fees to use the Hedera platform, such as when they transfer cryptocurrency coins, or add 
items to the ledger. Because the Hedera network has high throughput and does not require proof-of-
work, we anticipate the fees to be a small fraction of other public DLT platforms in the market today. 

Nodes in the Hedera ledger are compensated for the computing, bandwidth, and storage resources they 
use in establishing consensus and providing services. There are several types of payments and fees:

1 .  N O D E  F E E  - A user or application seeking to complete an action on the platform will send 
the corresponding transaction to a single node, which will then submit that transaction 
to the network. In doing so, the node will expend a small amount of resources and energy. 
Node Fees compensate nodes for those resources and incentivize nodes to take on this 
critical role. Initially, the Hedera Governing Council will set the amount of the Node Fees, 
but Node Fee amounts will eventually be left to each node to determine itself. Node 
fees are paid by end users directly to the account of the node that submits the user’s 
transaction to the network.

2 .  N E T W O R K  F E E  - After a transaction is submitted to the network, it is communicated 
to nodes that validate any digital signatures, then further communicated to other nodes, 
which temporarily store it in their memory while the network reaches consensus. Users 
pay a Network Fee that compensates all participating nodes for this activity of calculating 
consensus on the transaction. The resources required to validate a transaction can vary 
based on the particulars of the transaction, but generally depend on the transaction’s 
file size and number of digital signatures. Network Fees are paid by users into a Hedera 
Treasury account and a portion of such collected amounts are subsequently distributed 
daily to participating nodes as Node Reward Payments.

3 .  S E R V I C E  F E E  - Service Fees compensate nodes for the ongoing burden of maintaining 
or supporting the transaction. As an example, for a file storage transaction, all nodes 
will store the file on their hard drives for a specified period of time and the Service Fee 
for that transaction will reflect the size of the file and duration of time it’s stored. For a 
transaction that requests a smart contract function be executed, the Service Fee will be 
based on the processing power required by network nodes to perform that computation 
and any associated storage burden, e.g. storing the results of the contract execution. 
Service Fees are paid by users into a Hedera Treasury account, and a portion of such 
collected amounts are subsequently distributed daily to participating nodes as Node 
Reward Payments.

The three different fee types are shown in the diagram below, indicating from which account they are 
taken, and to which they are added. Clients pay nodes fees directly to the node that they requested to 
process their transaction. Clients pay network fees to the same node, but those fees will be passed on to 
the Hedera Treasury. Clients pay service fees directly to Hedera. All fee payments are made through the 
network coming to consensus on a gossiped transaction that authorized the payment.
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Hedera collects services and transaction fees on behalf of all the nodes processing the transactions and 
performing the services. Hedera uses those collected fees to fund incentive payments to nodes:

N O D E  R E W A R D   P AY M E N T  – Once a day, payments are made from the Hedera account to nodes, to 
incentivize them to serve as nodes. To be paid, a node must have been online for the full day, according to 
thresholds defined by the Hedera Governing Council (e.g., requiring that the node contribute at least one 
event each to at least  90% of the rounds during that 24 hour period). A node will be paid proportional to 
the amount of cryptocurrency it is staking (both owned by itself, and proxy staked to it by others).

The fee model is designed to allocate costs and risks appropriately.
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The biggest resource costs are paid for by service fees, and those resource costs (e.g., storing a large file) 
are never incurred until proper payment has been made by the client. As an example, a client must pay 
for the storage of a file for 30 days in advance at the time of the transaction that creates the file on the 
network.

The smaller resource costs of gossiping and reaching consensus on the transactions themselves are paid 
for by the network fees. The node that submits a transaction will first verify that the account paying the 
fees has sufficient funds, but there is a small risk that the balance will drop below this level in the short 
period of time it takes for the transaction to be processed Into consensus. In this case, the network will 
have spent resources but will not be paid for that effort. 

So at each level of the system, costs are paid for, and economic incentives are aligned.

When a client contacts a node for help submitting a transaction to the network to perform some service 
for the client, the client stipulates on the transaction a transaction fee parameter – this is the maximum 
amount the client is willing to pay for the requested service.

The node performs a precheck by analyzing the transaction to determine the amounts of the various 
network resources (bandwidth, CPU, storage, etc) the associated service will require and multiplies those 
amounts by coefficients in a published fee schedule to determine the total transaction fee. The node 
compares this calculated transaction fee to the client’s stipulated maximum transaction fee as well as to 
the client’s balance to determine if the transaction should be submitted to the network. 

Once the transaction is submitted, all nodes process it into consensus order, calculate the transaction 
fee, determine if the client account still has sufficient balance and, if so, applies the transaction to the 
consensus state, and finally process fees as described above. 

The fees incentivize the node to submit a transaction correctly as it will not be paid if it fails to do so.

The service fee is only paid if the service is performed so the risk to the client is minimal. And because the 
service is only performed if the payment occurs, there is not a risk to the Hedera network.
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The Roadmap to Scale
The following are the phases by which we expect the network will grow from concentrated nodes and 
stake to widespread nodes and stake. These phases will not be distinct but represent the expected 
evolution of the network and its currency. 

P H A S E  1  The Hedera Treasury holds most of the coins, and the Treasury will begin to “proxy 
stake” coins to the nodes managed by the Hedera Council Members. Some coins from the 
Hedera Treasury will also be distributed to the general population for use on the network. 
Individuals that use the Hedera-provided wallet software may also become able to proxy 
their coins to the Council Member-managed nodes.

P H A S E  2  In addition to Hedera Governing Council members, additional trusted parties will become 
able to stand up nodes.  The Hedera Treasury and Hedera-provided wallet software used 
by hbar holders (by default) will proxy stake coins to both the Council Member nodes and 
these additional trusted node operators. Over time the distribution of coins will become 
more widely spread out across a greater number of nodes. More coins continue to be 
distributed from the Hedera Treasury to the general population of network users.

P H A S E  3  Individuals who are interested may go through a Know-Your-Customer process and then 
also stand up nodes and receive staking of coins from the Hedera Treasury and the default 
Hedera wallet software. More coins will continue to be distributed out of the Hedera 
Treasury to the general population. Anonymous individuals can begin to run nodes and 
receive proxy-staked coins. The Hedera Treasury and Hedera wallet software will not 
proxy coins to those anonymous nodes, but those nodes may be able to receive proxied 
coins from 3rd-party wallet software.

P H A S E  4  As the coins are distributed widely and competing wallet software programs arise, there 
will be a market for proxying coins that is independent of the Hedera Governing Council. 
Eventually all of the coins are widely distributed, there is a market of wallet software, and a 
market of nodes competing for proxy staking. 

In this way, all of the coins start in the Hedera Treasury account, and the initial Hedera wallet software 
defaults to proxying just to members of the Hedera Governing Council, but over time both the coins and 
the proxying gain wider and wider distribution until they are distributed across millions of nodes and 
accounts.
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Appendix 1: Team

A P P E N D I C E S

D R . L E E M O N B A I R D, C O - FO U N D E R , C TO, A N D C H I E F S C I E N T I S T

Leemon is the inventor of the hashgraph distributed consensus algorithm, 
and is the Co-Founder and Chief Scientist of Hedera. With over 20 years of 
technology and startup experience, he has held positions as a Professor of 
Computer Science at the US Air Force Academy and as a senior scientist 
in several labs. He has been the Co-Founder of several startups, including 
two identity-related startups, both of which were acquired. Leemon 
received his PhD in Computer Science from Carnegie Mellon University 
and has multiple patents and publications in peer-reviewed journals and 
conferences in computer security, machine learning, and mathematics.

M A N C E H A R M O N , C O - FO U N D E R & C E O

Mance is an experienced technology executive and entrepreneur with 
more than 20 years of strategic leadership experience in multi-national 
corporations, government agencies, and high-tech startups, and is Co-
Founder and CEO of Hedera. His prior experience includes serving as the 
Head of Architecture and Labs at Ping Identity, Founder and CEO of two 
tech startups, the senior executive for product security at a $1.7B revenue 
organization, Program Manager for a very-large scale software program 
for the Missile Defense Agency, the Course Director for Cybersecurity 
at the US Air Force Academy, and research scientist in Machine Learning 
at Wright Laboratory. Mance received a MS in Computer Science from 
the University of Massachusetts and a BS in Computer Science from 
Mississippi State University.

N ATA L I E G R U N F E L D F U R M A N , G E N E R A L C O U N S E L

Natalie is the General Counsel for Hedera. She was previously a senior 
associate at Paul Hastings LLP, where her practice focused on intellectual 
property, unfair competition, and rights of privacy and publicity. Prior to 
law school, she started her career in Silicon Valley, providing strategic 
advice to high tech startups. She was Director of Strategy and Business 
Development at an online group communication startup acquired by 
Yahoo! Inc. and Director of Business Development for a technology 
startup developing a global collaborative supply chain platform. Natalie 
received her BA in Anthropology with honors from Stanford University 
and her JD from Columbia University School of Law.
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C H R I S T I A N H A S K E R , C H I E F M A R K E T I N G O F F I C E R

Christian has two decades of experience in enterprise software in a 
variety of roles at startups and large companies, including marketing, 
product management, product marketing, and sales management, and 
is the Chief Marketing Officer for Hedera. He was previously the Vice-
President of Marketing at DataStax, where he was responsible for 
developer education and open source Apache Cassandra community 
initiatives during a period of hyper-growth. A Brit by birth, Christian has 
degrees from the University of Manchester and the London College of 
Music.

L I O N E L C H O C R O N , C H I E F P R O D U C T O F F I C E R

Lionel is an experienced product executive, with over 20 years of 
experience bringing enterprise products to market and driving their 
adoption, and is the Chief Product Officer of Hedera. He joins from Oracle, 
where he was Vice President, Industry and Emerging Technology, and led 
their emerging technology (Blockchain, IoT, AI) solution efforts across 
industries. Prior to that, he was Vice President and General Manager at 
Cisco, where he co-launched, productized, and scaled Cisco’s fast-growing 
Internet of Things (IoT) business. He has previously held roles at A.T. 
Kearney, Bain & Company, and BNP Paribas. Lionel has an MBA from UC 
Berkeley’s Haas School of Business, a Masters in Engineering from McGill 
University, and a Bachelor’s degree in Engineering from Ecole des Mines. 

M E H E R N O S H (N O S H) M O DY, S E N I O R V I C E- P R E S I D E N T, E N G I N E E R I N G

Nosh brings 25 years of experience as an engineering manager and 
technology executive, and is the Senior Vice-President of Engineering 
of Hedera. He was previously the Director of R&D at Trend Micro 
TippingPoint, responsible for the development and innovation of 
TippingPoint Intrusion Prevention Systems. Prior to Trend Micro, he 
managed R&D at numerous startups, including Britestream Networks 
and Coretrace Corp. Nosh has an MBA from the University of Texas and a 
MS in Computer Science from the University of Massachusetts.
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AT U L M A H A M U N I , S E N I O R V I C E- P R E S I D E N T, P R O D U C T

Atul has many years of experience in product management, and is the 
Senior Vice-President of Product of Hedera. He was previously Vice 
President of Blockchain SaaS Apps and Internet of Things (IoT) SaaS 
Apps, PaaS Platform at Oracle. Prior to that, he served in product 
management, strategy, and development roles at Cisco, Juniper Networks, 
and Nokia. 
 
 

ZENOBIA GODSCHALK, SENIOR VICE-PRESIDENT, CORPORATE COMMUNICATIONS

Zenobia Godschalk has over 20 years experience in high tech PR and 
helping companies create and dominate new categories, and is the Senior 
Vice-President of Corporate Communications of Hedera. Previously, she 
was a sell-side analyst with investment bank Morgan Keegan, where she 
was part of The Wall Street Journal’s #1 Ranked Software Analyst team. 
Prior to this, she served as the head of corporate communications for 
Opsware Inc (NASDAQ: OPSW), founded by Marc Andreessen and Ben 
Horowitz, which was acquired by HP for $1.6B. Zenobia graduated from 
Stanford University with a BA in Economics and Psychology, minor in 
Industrial Engineering. 
 

J O R DA N F R I E D, S E N I O R V I C E- P R E S I D E N T, B U S I N E S S D E V E L O P M E N T

Jordan is a DLT evangelist and self-professed crypto-capitalist, and is 
the Senior Vice-President of Business Development of Hedera. He was 
previously the Co-Founder and CEO of Buffered VPN, the fastest growing 
personal VPN service online, which was acquired in Q1 2017. Jordan is 
an investor in companies such as Hive.org and Buffer App and has been 
featured in Entrepreneur Magazine, Inc.co, Wired.com, Time Magazine, 
and Success.com.
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E D G A R S E A H , H E A D O F A S I A PAC I F I C R E G I O N

Edgar is an angel investor in early-stage tech companies, and is the Head 
of the Asia Pacific Region in Business Development for Hedera. He was 
formerly Head of Asset Backed Trading and Syndication and Co-Head of 
Asset Backed Originations at Bank of America Merrill Lynch for Asia. After 
this, he lived in Ghana to launch Sponsors for Educational Opportunity 
Africa, a revenue generating non-profit leadership development program 
for young Africans. Edgar earned his BA at Carnegie Mellon University (Phi 
Beta Kappa). 

B R E T T M C D OW E L L , E X E C U T I V E D I R E C TO R , G OV E R N I N G C O U N C I L

Brett brings over 20 years of IT industry coalition experience, and is the 
Founding Executive Director and Vice Chair of the Hedera Governing 
Council. He has had founding executive roles at the Kantara Initiative, 
IDESG, DMARC.org, and FIDO Alliance, where he still serves as an advisor. 
In addition, he has extensive multi-stakeholder governance experience, 
having served on the board or advisory board of MAAWG, NCSA, 
StopBadWare, and PCI SSC, among other industry coalitions. Brett is a 
fellow at the UMASS Center for Digital Government, a member of the US 
Federal Reserve Bank’s Mobile Payments Industry Working Group and a 
recipient of the 2019 Top 50 Tech Leaders award from InterCon.

K E N A N D E R S O N , C H I E F D E V E L O P E R A DVO CAT E

Ken is passionate about a distributed economy, and is the Chief Developer 
Advocate of Hedera. He is a serial entrepreneur, with 20 years of 
experience in system design and software architecture. He has built 
a team of award-winning engineers and consulted as interim-CTO for 
various companies during periods of restructuring. He was also the lead 
contributor to the TM Forum’s REST API design guidelines, now used 
throughout the multi-trillion global telecom industry. Ken graduated 
with a BBA in Management Information Systems from California State 
University and was an Intelligence Sergeant in the United States Army.
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Appendix 2: Sharding

Initially, the network will consist of a relatively small number of nodes in a single shard. As the network 
grows, it will gain sufficient nodes to support multiple shards. Those shards will work in the following way.

A transaction is always submitted to a specific shard. Within a shard, every node receives all of that 
shard’s transactions, and every node maintains an identical shared state. Each shard can store both 
cryptocurrency accounts and files. Every shard can run smart contracts.

A shard uses the hashgraph consensus algorithm to reach a consensus order for its transactions. Each 
shard must be able to trust the consensus decision of each of the other shards. Therefore, each shard 
must be composed of randomly chosen nodes, and must be large enough so that it can be trusted to never 
have 1/3 of its staked cryptocurrency being owned by malicious nodes.

If a transaction involves only resources within a given shard, then when that point in the consensus order 
is reached, the transaction performs its effect. For example, a transaction might move cryptocurrency 
between two accounts within the same shard. Or it might save a file within that shard and pay for it with 
an account in that shard. In those cases, the cryptocurrency transfers or the file is stored immediately, at 
the point where the transaction occurs in the consensus order.

If a transaction involves resources in different shards, then it will trigger inter-shard messages. For 
example, if the cryptocurrency account Alice is in shard Alpha, and account Bob is in shard Beta, then 
Alice creates and signs a transaction to move cryptocurrency from Alice to Bob. She submits that 
transaction to a node in the Alpha shard, and all of the nodes in Alpha reach consensus on its order. At the 
point where this event occurs in the consensus order, Alice’s account balance is decreased by the amount 
being sent, and a message to the Beta shard is generated. Each shard maintains a queue of outgoing 
messages to be sent to each of the other shards. So this new message is added to the queue that Alpha 
maintains for messages to send to Beta. Each message in a given queue has a 64-bit sequence number, 
which starts at zero when the network is first created, and then increments with each new message sent. 

Each member of Alpha will, at random intervals, check to see if there are any messages in any outgoing 
queues, and attempt to send one of the queues. When they see that there are messages intended for 
Beta, they will call a random member of Beta, and give them all messages in the queue, along with the 
proof that this queue is part of the current signed state for Alpha.

When a member of Beta receives such a list of messages from the member of Alpha, the Beta member 
submits a transaction to Beta that has the messages and the proof that they are part of the signed 
state. If they see that a message has already been submitted, then they won’t submit it again. Though 
sometimes the same message may be submitted twice at the same time. In that case, the sequence 
numbers will match, so the duplicate will be ignored, and no harm is done.

A P P E N D I C E S
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All messages between two particular shards will be processed in order of sequence number. So, if Alpha 
sends a message to Beta, and it is put into a transaction within Beta, then when that transaction  
reaches consensus, at that point in the consensus order, its sequence number will be checked. If it is the 
next message in sequence, then its effect is performed immediately. If the sequence number shows that 
one or more other messages have been skipped, then it has no effect and is ignored. In that case, the 
other messages will eventually reach consensus, and then the skipped message will be submitted again, 
and will have an effect.

When Beta processes a message with Alpha with the expected next sequence number from Alpha, then 
it increments the count of the number of messages from Alpha that have been processed. So each shard 
maintains a single number for each of the other shards, which is the latest sequence number from that 
other shard that has been processed.

After Alpha has sent to the message to Beta, that message remains in the outgoing queue, and attempts 
will repeatedly be made to send it. Eventually, a member of Apha will contact a member of Beta to send 
that message, but will receive back a proof that the message has already been processed. That proof 
shows that the signed state contains Beta’s sequence count for messages received from Alpha, and that 
the count is now higher than the message in the queue. At that point, the member of Alpha wraps the 
proof in a transaction, and gossips it out to Alpha. When it reaches consensus order, at that point the 
message is deleted from the outgoing queue in the shared state.

For the example of transferring cryptocurrency from Alice to Bob, we could say that there is “finality” 
when we know that the transfer is valid, that Alice had sufficient funds, and that Bob will certainly receive 
the funds. If this transfer is for Alice to buy a product from Bob, then finality is point in time where it is 
safe for Bob to give the product to Alice. The time to finality is actually as short as the consensus time 
for a single shard. Because once consensus has been reached on that initial transaction, it is certain that 
Alpha will send a message to Beta, and that Beta will process it, and that Bob’s account will receive the 
transfer. So finality is as fast as consensus.

If a transfer is from one source account to two destination accounts, finality is still just as fast. As soon 
as the initial transaction reaches consensus, it will be known whether it had sufficient funds, and so 
whether the two messages will be sent.

However, if a single transaction is to transfer from two source accounts to one destination account, and 
the source accounts are in different shards, then finality will be slower. Because it will have to involve 
another type of message: a “hold”, which is later followed by a “release”.

For example, suppose a transaction is created to transfer 2 coins from Alice in Alpha shard and 3 coins 
from Bob in Beta shard, with the 5 coins being transferred to Gina in Gamma shard. This is intended to be 
atomic, so that nothing will happen unless Alice and Bob both have sufficient funds for the transfer.

To achieve this, the transaction must be signed by both Alice and Bob, and must be submitted to the 
Alpha shard. When it reaches consensus, it causes a “hold” to be put on 2 coins in Alice’s account.  
This means that 2 coin’s worth of the account is temporarily frozen. While it is frozen, Alice is still free  
to receive funds and to transfer out funds, but can’t do any transfer that would decrease her balance  
to less than 2 coins.

A P P E N D I C E S



4 9

At the same time that Alpha puts a hold on 2 coins for Alice, it also sends a message to Beta requesting a 
hold of 3 coins for Bob. This message does not need to be signed by Bob, because it is coming from Alpha, 
and Alpha has already checked that Bob had signed the transaction.

When the message is received and reaches consensus, Beta will attempt to put a hold on Bob’s account 
for 3 coins. If he has sufficient funds, it succeeds. If he has less than 3 coins, then it fails, and no hold is put 
on him at all. Beta then sends back to Alpha a message saying whether the hold was successful.

When Alpha receives a reply that the hold was successful, Alpha then decrements Alice’s account by 2 
coins (which also removes the hold), and sends a message to Beta saying to decrement Bob’s account by 3 
coins (removing his hold) and sending a message to Gamma to increment Gina’s account by 5 coins. 

On the other hand, if Beta’s message said the hold failed because Bob did not have sufficient coins, then 
Alpha simply released the hold on Alice’s account, and considers the entire transaction to have failed. 
None of the three balances change.

Note that when this all started, with Alpha processing the initial transaction, it was possible for Alpha to 
calculate how many messages would be involved in the entire process: 4 messages in this example. Alpha 
will therefore check that the transaction included authorization of a service fee that included the fee for 
the service of sending those 4 messages. Hedera then automatically makes payments to the nodes that 
created each of the message transactions that were handled (and not ignored as duplicates). This acts 
as incentive for nodes to do the work of sending messages to other shards, receiving confirmations of 
receipt from them, and creating the transactions that contain those messages and confirmations.

A P P E N D I C E S
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Abstract 

The Consensus Service proof-of-concept use case is providing custom Hyperledger Fabric networks 
with decentralized consensus on the validity and order of blockchain transactions without the need 
to configure a RAFT1 or Kafka2  ordering service. Additional use cases include, but are not limited to, 
financial markets, matching engines (like those used in Uber or AirBnb), or supply chain negotiations 
(e.g., several competing factories bidding on parts from several competing parts suppliers).  

The Hedera Consensus Service synchronizes the fair order of messages for distributed 
systems without relying on a centralized clock. 

1 “Configuring and Operating a RAFT Ordering Service,”  
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/raft_configuration.html 
2 “Bringing up a Kafka Ordering Service,”  
    https://hyperledger-fabric.readthedocs.io/en/release-1.4/kafka.html

ON A DISTRIBUTED LEDGER, THE ENTIRE 

NETWORK RECORDS AND VALIDATES 

EACH TRANSACTION. 
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Introduction 

The Hedera Consensus Service is the first Distributed Ledger Technology (DLT) network service to 
provide solely the validity and order of events and transparency into the history of events over time 
without requiring a persistent history of transactions. As a result, the Hedera Consensus Service 
provides these benefits of a fast, fair, and secure consensus at a lower cost than any other public 
distributed ledger network. 

Whether in financial services, IoT, or supply chain - the timing and order of events dictates everything 
from financial transactions to meaningful asset provenance. The applications must execute logic 
based on events which occur at a specific time, in a specific order. In many cases the users of  
these applications need to look back in time to the history of that order for everything from audit  
to reconciliation. 

Today, these applications rely on moderation, matching, and ordering performed by single entities. 
This makes them prone to network outage3, at risk of collusion by a small number of parties4, and 
subject to the cost model of centralized infrastructure providers5.  Even private distributed ledger 
networks rely on nodes operated by one or few parties to provide consensus to the rest of the 
network6. Each approach poses economic risk due to cost and operational risk due to unintentional 
outage or intentional manipulation of a service.

In the distributed ledger space, protocols aim to solve this problem through the provision  
of two features:

 1 Decentralized consensus on the validity and order of events. 
 2 Transparency into the history of events over time.

The first value relies on the existence of nodes to come to agreement on the time an event occurred, 
ultimately producing a consensus order for events over time. Distributed ledgers such as R3’s Corda, 
Hyperledger Fabric, or enterprise version of Ethereum either deploy known and trusted nodes 
operated by institutions, trust a single party to provide the order, or rely on slow and expensive public 
ledgers like Bitcoin or Ethereum to select a block producer through proof of work7. Applications 
can be forced to wait minutes or even hours for confirmation on finality of a transaction. There 
is a market need for distributed and fast consensus without the need to centralize the consensus 
process.

3Gps Error Caused ‘12 Hours Of Problems’ For Companies 
 Chris Baraniuk - https://www.bbc.com/news/technology-35491962 
4Corrupt Governance? What We Know About Recent Eos Scandal 
 Stephen O’Neal - https://cointelegraph.com/news/corrupt-governance-what-we-know-about-recent-eos-scandal 
5Cloud Pub/sub | Google Cloud 
 https://cloud.google.com/pubsub/ 
6The Ordering Service¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html and Notaries¶ 
7“Recent studies hint that the performance of PoW based blockchains cannot be enhanced  
 without impacting their security” - https://eprint.iacr.org/2016/555.pdf
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 8Bitcoin Blockchain Size 2010-2019 | Statistic 
 https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/

The second value is the ability of any individual or entity to independently verify whether and when 
an event occurred. This is most frequently used to track account balances of tokens, or to verify the 
provenance of an asset. Traditional blockchains rely on storage of all events across all members of the 
network. This model allows for simple querying of account balances but limits performance to 10-20 
tps and means the ledger will continue to grow (bitcoin alone is over 200 GB as of the writing of  
this paper).8

Hedera provides a unique solution to deliver optimized performance of decentralized consensus 
without the need to persist a history of transactions over time through the provision of the Hedera 
Consensus Service. The Hedera Consensus Service will use the Hedera public network and underlying 
hashgraph consensus algorithm for fast, fair, and secure consensus while offloading the validation 
and storage requirements for distinct applications to computers using the Mirror Network.

5 3A P P E N D I C E S
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Hedera Governance  

and the Path to Decentralization
The Hedera public network is built from the ground up to deliver decentralized services at a scale 
needed for enterprise and consumer applications. This includes full decentralization of network 
operations, high performance, and guaranteed finality.

Decentralization
The Hedera public network will be governed by a Council of 39 term-limited, multi-industry and multi-
geo large enterprises who ensure the stability and growth of the network. They act as the initial node 
operators before node operation becomes public long term. This ensures that the network itself and 
services it provides are not prone to collusion or manipulation at the desire of a small group of entities 
or miners. This acts as a multi-cloud/multi-data center service with inherent disaster recovery 
and high availability that can be used by any application. The Hedera Consensus Service provides 
transaction ordering on a decentralized network rather than relying on a single cloud provider or 
small group of private node operators.

Performance
Throughput continues to bottleneck the majority of decentralized public networks today. Hashgraph 
enables faster consensus with 100% finality and without the need to elect leaders, trust a small 
subset of nodes, or in any way compromise the security of the network. The Hedera Consensus 
Service will extend this benefit for any transaction type submitted by an application. Consensus 
occurs in a matter of seconds while processing tens to hundreds of thousands of transactions per 
second. This level of performance is required for any scaled consumer or enterprise application.

Finality

D E C E N T R A L I Z AT I O N P E R F O R M A N C E F I N A L I T Y
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Finally, the order that is created by the mainnet is final and verifiable. Consensus timestamps on 
the Hedera mainnet are 100% final once they are created due to its Asynchronous Byzantine fault 
Tolerance (ABFT) nature. This means that the timestamp of a given transaction is final and cannot 
change. Any client application can query the network for the record (created automatically by the 
nodes to capture key information about the transaction being added to consensus) and optionally 
ask for a corresponding state proof (a cryptographically secure and persistent assertion from 
the network as to the accuracy of the record) to confirm that timestamp. Additionally, Consensus 
Service transactions will be stored on mirror nodes running additional software. Users can run mirror 
nodes themselves, query a mirror node for state proofs, or validate records between multiple mirror 
nodes to verify the complete order without needing to trust a single node operator.

6HEDERA CONSENSUS SERVICE

Hedera Governance  

and the Path to Decentralization
The Hedera public network is built from the ground up to deliver decentralized services at a scale 
needed for enterprise and consumer applications. This includes full decentralization of network 
operations, high performance, and guaranteed finality.

Decentralization
The Hedera public network will be governed by a Council of 39 term-limited, multi-industry and multi-
geo large enterprises who ensure the stability and growth of the network. They act as the initial node 
operators before node operation becomes public long term. This ensures that the network itself and 
services it provides are not prone to collusion or manipulation at the desire of a small group of entities 
or miners. This acts as a multi-cloud/multi-data center service with inherent disaster recovery 
and high availability that can be used by any application. The Hedera Consensus Service provides 
transaction ordering on a decentralized network rather than relying on a single cloud provider or 
small group of private node operators.

Performance
Throughput continues to bottleneck the majority of decentralized public networks today. Hashgraph 
enables faster consensus with 100% finality and without the need to elect leaders, trust a small 
subset of nodes, or in any way compromise the security of the network. The Hedera Consensus 
Service will extend this benefit for any transaction type submitted by an application. Consensus 
occurs in a matter of seconds while processing tens to hundreds of thousands of transactions per 
second. This level of performance is required for any scaled consumer or enterprise application.

Finality

D E C E N T R A L I Z AT I O N P E R F O R M A N C E F I N A L I T Y
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The Fair Order of Transactions
Hashgraph’s primary function is to calculate a fair order of transactions in a decentralized 
environment. One of the major differentiators is the degree to which individuals or small groups are 
prevented from manipulating the order, ensuring fairness.9 

The Hedera public ledger uses the hashgraph consensus algorithm and its HBAR cryptocurrency to 
initially provide three services: Cryptocurrency, Smart Contract, and File Service. Hashgraph uses 
gossip about gossip and virtual voting in order to bring the network to consensus on the timestamp 
of any event with efficiency of bandwidth usage without centralizing around any entity or group of 
entities. Hbars are the network coin, which enable any holder of the coin to pay for utility provided by 
the network, and also ensures security of the network through the process of staking (tying influence 
within virtual voting to the amount of coin held).

Gossip between the Hedera nodes is the same speed regardless of which node submitted the 
transaction and cannot be increased by paying more for a given transaction. This differs from other 
public network models which allow applications to pay more for their transactions to be processed 
first. Similarly, because there is no concept of leaders in the consensus, no small subset of nodes can 
collude to unduly influence the consensus order in their own favor.

Transactions are propagated to the network and come to final consensus in a matter of seconds. If 
an application is worried about a single node holding back from sending the transaction to the rest of 
the network then they can submit to multiple nodes. In this scenario then only the first transaction to 
reach consensus would be kept and the others would be ignored.

Hedera’s Other Services 
Hedera built three initial services to expose the value of decentralization to any application builder:

 1 Cryptocurrency: access a low cost and fast method of transferring value between   
  accounts without relying on intermediaries. The Cryptocurrency Service can be used  
  for payment applications, data purchases, and many other use cases relying on  
  fast value transfer.

 2 Smart Contracts: execute code deterministically without needing to trust an   
  application operator. Build fair markets, issue tokens, and program business logic in  
  Solidity and deploy it on Hedera to benefit from trusted security and fair ordering.

 3 File Service: store data across the network for any node or user to access or  
  store obfuscated data to benefit from a consensus timestamp of the state of data  
  at a point in time. Create decentralized registries, records, and other public data  
  on the File Service.

 9https://www.hedera.com/whitepaper
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These services enable large enterprises, independent developers, and consumers to build or use 
applications across industries and geographies. They are consumable through SDKs in common 
programming languages and are intended to support applications of any type. 

Extending to the Consensus Service

The Consensus Service relies on another feature to propagate the full history of transactions and 
their results to many participants: the mirror network. Messages ordered by the Consensus Service 
will be received by the mirror nodes. Developers can choose to implement additional software on 
each mirror node. A mirror node could store all the messages for certain topics (identifiers used to 
associate a message with a specific application or network). It could store all messages (strings of 
bytes representing a given transaction). Or it could even store the records of all transactions that 
reached consensus on the ledger. If everything is stored, it can form something that resembles a 
traditional blockchain, even though the Hedera ledger never keeps that history.

The Hedera mirror network (mirrornet) is a parallel network dedicated to propagating the state of 
the Hedera main network (mainnet). This propagation is accomplished without adding unnecessary 
strain to the mainnet; and while anyone will be able to host a mainnet node in the future, mirror nodes 
allow businesses to extend the functionality of Hedera without a serious impact on the mainnet.

The mirrornet is a set of nodes that maintain all of the same requirements and most of the 
functionality of the mainnet. The primary difference in functionality is that mirror nodes do not 
participate in consensus. They receive information from the mainnet, but do not send information 
to it. Mirror nodes continue to gossip with other mirror nodes, and will calculate consensus and 
verify signatures, but they have no effect on the mainnet, therefore they have no ability to submit 
transactions for consensus and no voting power. Mirror nodes can be thought of as read-only nodes in 
that transactions cannot be submitted to a mirror node via the Hedera API. Mirror nodes operators 

Hedera extends these network services with a fourth service, which brings the fairness 
provided by the hashgraph consensus algorithm to the Hedera Consensus Service.  
This service receives messages, and assigns them consensus timestamps and a 
consensus order.

MIRROR
NODES

101010
010101
101010

101010
010101
101010

101010
010101
101010
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are free to develop additional APIs for providing new kinds of services that they develop.  The beta 
version of the mirror nodes was completed in May 2019, and has greater latency (e.g., a minute), but 
the full mirror nodes will have a latency of seconds.

Mirror nodes operated by individuals or private networks leveraging the Consensus Service will be 
able to filter and receive events and records for transactions which have a specified topic. They will 
then be able to store the full history of events relevant to their application.

5 8A P P E N D I C E S
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HEDERA NETWORK
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Architecture
This section will describe the architecture of the Consensus Service on the Hedera public network 
along with an overview of how the Consensus Service can enable interoperability with and between 
any Hyperledger Fabric based network.

Hedera Consensus Service Architecture 
The Hedera Consensus Service is the fourth core service provided by Hedera. Like the other services, 
the Consensus Service will be exposed via a diverse number of SDKs in common programming 
languages, as well as the Hedera API (HAPI) using protobufs. This allows applications to access the 
network services using both the SDK abstractions as well as the lower level APIs. 

The client application would submit a message (a string of bytes) and give it a topic (an ID number). 
The message would include the relevant details of a transaction such as bid on a financial asset, or 
even just the hash of data stored elsewhere. The topic will allow messages with the same topic to be 
classified together. The client application would pay a transaction fee, denominated in hbars, for the 
use of the Consensus Service. 

The Hedera public ledger will return a record which says that consensus has been reached, the 
timestamp it was reached, the sequence number of the event for the given topic. The sequence 
number will allow the application to interpret the order of the message relative to the other messages 
with the same topic. The result will also include a running hash of all the messages so far for that topic. 
A running hash is a few bytes that act as a fingerprint of all the messages so far for that topic.

Topics are created by executing a transaction defined by the HAPI which allows the topic to be 
created, the keys of the owner to be specified, the keys of who is allowed to post to or delete the topic 
to be specified, and which will return the ID number of the topic.

Figure 1A: Public Network
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In practice we expect the Consensus Service to be used by a group of mirror node operators and 
users who are leveraging an application which handles private or proprietary data, but benefits from 
the fast ordering, decentralized trust, and immutable record of a public ordering service.

To set up the network, the organizations would configure one or multiple mirror nodes, program 
client applications on them, and configure one or multiple keys that allow those who have the keys 
to see what the group is doing. The group would also define a topic which they can use to identify 
transactions relevant to their group. This topic will be attached to messages which the client 
application will send to the Hedera public network.

 

Figure 1B: Transaction Ordering Process 

The figure above outlines the process for sending a transaction to the Hedera Consensus Service. 
The client application will create a transaction using the Hedera SDK which allows it to include a 
message and topic. The message could describe some action, or contain just a hash, or be any other 
byte array relevant to the client application. Each application will need to use one or more topics.

Like the other Hedera network services, the transaction can be sent to a single or multiple mainnet 
nodes. The mainnet node will check that the transaction has the necessary information (signature(s), 
payment, inputs) and return an acknowledgment to the client application that the transaction has 
met precheck. A sample transaction is shown below:

CLIENT
APPLICATION

SDK 
INTERFACE

MAINNET
NODE

MIRROR
NODE

Client application 
submits transaction 
with a message 
and topic.

1
Hedera node 
returns pre-check 
con irmation.

2

Hedera node gossips 
event to network.3

Hedera network determines 
order and consensus timestamp of event.4

Hedera node generates transaction record with 
payload, topic, order and consensus timestamp.5

Mirror node listens for 
records of a given topic.6

Mirror node parses 
transaction details 
to create order. 

7

Client application 
communicates with mirror 
node to execute logic based 
on transaction order.

8
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The mainnet node will gossip the event to the rest of the network, allowing the network to determine 
a consensus timestamp for the event using the hashgraph consensus algorithm. A record will then be  
generated which includes the message, the topic, the order, the running hash, and the consensus timestamp. 
The consensus timestamp is 100% final once reached, and typically is reached in a matter of seconds. 

The mirror node receives all information from the mainnet, and therefore learns of the transaction 
and its consensus order, with consensus timestamps, tied together with a running hash. It can also 
construct state proofs that can prove to a third party the exact list of messages received for the 
topic, and in what order, and with what timestamps.

The mirror node runs software that implements the application’s business logic. It would take the 
results of an ordered transaction and return results to the application such as matching bids and 
asks in a stock market, transferring security tokens between account holders, or updating the status 
of a good for a shipping and logistics provider.

This feature would have a performance and cost profile similar to using the Cryptocurrency Service 
(<$0.001 per transaction). Finality would be achieved within a matter of seconds.

The application benefits from the distribution of both the mirror network and Hedera public network. 
Any user can get records from one or multiple mirror nodes and check state proofs10  to confirm that 
the mainnet agreed upon that consensus timestamp and order of a transaction. This enables a real-
time audit of the mirror node to verify it did the right thing. Any user can also run a mirror node and 
would immediately know the truth about ordering and correct conclusions.

Hyperledger Fabric Interoperability
The Hedera Consensus Service proof-of-concept use case is providing custom Hyperledger Fabric 
networks with decentralized consensus on the validity and order of blockchain transactions without 
the need to configure a RAFT11  or Kafka12  ordering service.

Hyperledger Fabric features a kind of a node called an orderer (it’s also known as an “ordering 
node”) that does this transaction ordering, which along with other nodes forms an ordering service. 
Because Fabric’s design relies on deterministic consensus algorithms, any block a peer validates as 
generated by the ordering service is guaranteed to be final and correct.13 In addition to promoting 
finality, separating the endorsement of chaincode execution (which happens at the peers) from 
ordering gives Fabric advantages in performance and scalability, eliminating bottlenecks which can 
occur when execution and ordering are performed by the same nodes.

New as of Hyperledger Fabric v1.4.1, Raft is a crash fault tolerant (CFT) ordering service based on an 
implementation of Raft protocol in etcd. Raft follows a “leader and follower” model, where a leader 
node is elected (per channel) and its decisions are replicated by the followers.14

10State Proof: A cryptographically secure, portable assertion from a majority of the network   
 nodes as to some fact about a transaction entered into consensus or the state that resulted 
11Configuring and Operating a Raft Ordering Service¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/raft_configuration.html 
12Bringing Up a Kafka-based Ordering Service¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/kafka.html 
13The Ordering Service¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html 
14The Ordering Service¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html
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While RAFT is easier to set up and manage than Kafka-based ordering services (another option in 
Hyperledger Fabric), it still has two drawbacks:

 1 Configuration Complexity: There are four interrelated steps in the process of   
  bootstrapping a Hyperledger Fabric ordering node15 and six steps to add a new  
  node to a Raft cluster.16

 2 Byzantine Fault Tolerance: A Byzantine fault is a condition where components may   
  act in a malicious way. It even includes the situation where the network itself may   
  be controlled by an attacker.17  Raft is the first step toward Fabric’s development of  
  a Byzantine fault tolerant (BFT) ordering service but it isn’t Byzantine fault  
  tolerant today.18 

FABRIC PLUGIN  
& FABRIC PEERS

MAINNET
NODES

MIRROR
NODES

Notify 4 Gossip of transactions between nodes
with mainnet and mirror nodes
calculating consensus timestamp
& generating state-proofs.

 2

1CLIENT
APPLICATION

SDK 
INTERFACE

Broadcasts endorsed 
messages the Hedera node of 
choice (or randomly)

Publish order to all 
registered Peers. Peers can 
register with any or many 
mirror nodes. 

3

Run by Fabric network members

Run by Council/public

Byzantine – Hyperledger Fabric network 
inheirets the ABFT nature of the Hedera 
mainnet because any Fabric peer can 
communicate with any mainnet or mirror 
net node. Any non-malicious node will 
have the same record and state proof 
for a transaction. Malicious nodes would 
become apparent immediately because 
their records would contradict. 
Therefore only one mirror net node 
needs to be running for the system to 
be honest.

Figure 1C: Hyperledger Fabric/ Hedera Consensus Service Interoperability

The Hedera Consensus Service will make a global, fault tolerant, and cost-effective 
ordering service available to any Hyperledger Fabric network built today.19

 
15Setting Up an Ordering Node¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer_deploy.html 
16Configuring and Operating a Raft Ordering Service¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/raft_configuration.html 
17Byzantine Fault 
 https://en.wikipedia.org/wiki/Byzantine_fault 
18The Ordering Service¶ 
 https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html 
19Introduction 
 https://hyperledger-fabric.readthedocs.io/en/release-1.2/whatis.html
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The diagram on the previous page demonstrates the architecture for enabling any Hyperledger 
Fabric network to use the Hedera Consensus Service. In doing so the Hyperledger Fabric network can 
inherit the Byzantine nature of the Hedera public network. 

In step 1 the client application will broadcast an endorsed message to the Hedera network. The 
transaction will have been endorsed by the Hyperledger Fabric peers using the endorsement policy. 
The client application can submit the transaction to any of the mainnet nodes, or even multiple if it 
would like a higher degree of confidence that the transaction is submitted to the network. 

The transaction could be passed as any byte array (hash of the transaction, unique transaction 
id, etc.) and would include a topic which identifies the transaction as belonging to the specific 
Fabric network. The transaction would then get a consensus timestamp from the Hedera network, 
preparing it to be ordered.

Mirror nodes would also receive gossip from the mainnet nodes to calculate the consensus timestamp 
and generate a state proof themselves. One or many mirror nodes would then publish the order to a 
registered set of Hyperledger Fabric Peers. These transactions would then be structured and stored 
using a running hash to create a tamper proof chain of ordered transactions relevant to the  
Fabric network.

Any Fabric peer can communicate with any mainnet or mirror net node. Any non-malicious node will 
have the same record and state proof of a transaction. Malicious nodes would become apparent 
immediately because they would be unable to provide valid state proofs.

The Hedera Consensus Service provides any Fabric network the ability to order transactions with 
high throughput using a global network of nodes that do not need to be operated or individually 
trusted by the members of the Fabric network. This will reduce operational cost of Fabric-based 
solutions, improve resiliency to data center outages, and alleviate the need to determine who 
operates private Fabric ordering services per network. 
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16HEDERA CONSENSUS SERVICE

 20Networks have different privacy requirements. Certain networks could choose to use rotating or more anonymized   
 topics to make their transactions harder to identify.

Use Case
We will explore the example of a Fabric network security token followed by a 
decentralized stock market in this paper to demonstrate the use of the Hedera 
Consensus Service in operation.  

Private Network Token Issuance
A private network based on Hyperledger Fabric could issue a token for securities trading between 
regulated industries. This could be a fungible token representing fractional ownership in a specific 
property where only permissioned investors can purchase or trade the asset. 

The members or network administrator would create a topic and communciate the topic ID to all 
members of the network, so they can recognize both the network and token for the  
associated transaction.20 

When user A transfers a token to user B, the client application would automatically hash the 
transaction ID and submit it in the message payload of a transaction while specifying the correct 
topic. The transaction would be signed by the user’s client application and sent to the Hedera  
public network. 

Once the record is returned with an order of the message, the client application would complete the 
transfer between users, now having a fair and final consensus timestamp on when the transaction 
occurred. At scale the application would be able to determine which transfers come first, and which 
may be invalid depending on their timestamp. Users would be able to query the mirror node or the 
mainnet directly to confirm the record for a given transaction, or use mirror nodes to look further 
back in time to ensure the application is decentralized correctly.

The same network could also support atomic swaps of security tokens between networks. Say user 
A came to an agreement to trade token 1 for token 2, a token issued and traded in another regulated 
network and currently owned by user C.

In order to exchange the tokens, each user would be a participant in each network. In this use-case 
this may be required because both networks act as regulated financial markets where the investors 
are verified. 

Each token would then be locked up in a smart contract deployed in each network that requires 
signatures from both users and a timestamp from a transaction on the Hedera public network. Each 
user will agree to unlock (transfer) the tokens to the new owner simultaneously when triggered by a 
transaction sent to the Hedera Consensus Service and returned with a consensus timestamp.
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 21On A ‘rigged’ Wall Street, Milliseconds Make All The Difference 
 https://www.npr.org/2014/04/01/297686724/on-a-rigged-wall-street-milliseconds-make-all-the-difference

The Fabric-Hedera architecture enables the benefits of permissioned asset trading in a private 
network and the decentralized trust and immutability of the Hedera public network. Users do 
not have to worry about manipulation of the transaction order by a centralized party and have 
confidence that the service can sustain downtime from individual nodes.

Ordering for a Stock Market 
Stock markets typically foster behavior causing financial firms to spend millions to get a millisecond 
advantage in the amount of time it takes them to communicate their bid or ask to the stock market.21  
This fosters malicious behavior where certain firms front run others in order to achieve a financial advance. 

Stock markets built on Hedera will deliver fairness to all market participants.

A stock market could be built as an application in either a private network, similar to the token 
trading use case above, or directly on top of a mirror node or series of mirror nodes. These mirror 
nodes would run software which allows them to receive messages from the mainnet including the 
consensus timestamp and order. They may only listen to messages sent to the topic related to the 
stock market built on top.

A user of the application would submit their bid or ask to the Hedera Consensus Service either in an 
anonymized manner using a random transaction ID, or as a plaintext bid or ask. The message would 
include a topic which identifies it as belonging to either a specific market or even asset class.

The message would receive a consensus order and timestamp and be returned to the single or 
multiple mirror nodes running the stock market. The mirror nodes would only be listening for 
messages which have the correct topic to reduce storage burden. A local database would be 
structured with the ordered messages.

The application would be able to use this database to match bids and asks based on their consensus 
timestamps to operate an efficient and fair stock market. 

If a user doesn’t trust a mainnet node they can submit to one or multiple other nodes rather than be 
bottlenecked by a single source of truth. If a user doesn’t trust one mirror node, they would be able 
to ask it for a state proof, or ask any other mirror node for the records of transactions and even 
ask the mainnet for a state proof if they choose. The users may even be able to run the mirror node 
themselves to additionally verify the outcomes of the stock market.

Any honest node would be able to cryptographically prove they are right and the other is wrong.
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Liars in this use case (users, mirror nodes) would be shown immediately because two node’s results 
will conflict with each other. The barrier for these malicious users to impact the overall consensus 
process is also much higher through the use of a public network. A single entity (or an aligned group) 
would need to attain at least 1/3 of all the hbars in existence to materially impact consensus. In 
smaller private networks this barrier is lower due to both the fewer number of participants and lack 
of proof-of-stake security mechanism. 

It is most likely that stock market applications will add privacy to the above architecture to keep 
certain information confidential. The application in this case could encrypt the message and submit 
it to Hedera. Only the appropriate parties would be able to read the message while Hedera would only 
know that some message was processed.

The application would then decrypt the message using its key before comparing the bids and asks. 
This allows for true privacy for the stock market.
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Additional Opportunities
The previous two use cases scratch the surface of potential use cases of the Hedera Consensus 
Service. Ride hailing applications could use the service to match supply with demand for a taxi in real 
time. Supply chains could use the service to get an accurate and fair timestamp for asset transfers 
across a supply chain. Parts manufactures could use the service for real time actions of goods. IoT 
manufacturers could use the service to get a consensus timestamp on data read outs from sensors 
across the globe.

The Hedera Consensus Service provides another tool in the box of application builders for leveraging 
the power of decentralization.
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Conclusion
The Hedera Consensus Service brings the value of fast, fair, secure, and decentralized consensus 
to any application – private ledger based or not. Organizations and individuals can issue and trade 
tokens between private ledger by using the fair global ordering of transactions for any application.

The Hedera Consensus Service reduces the cost of operating private networks, enables  
both privacy and scalability, and improves the trust model over both private ledgers and  
centralized servers.

As with the other Hedera network services, the value of the Consensus Service will be realized most 
by the diverse applications built on the network by developers from organizations of any size or focus. 
Long term this will enable a network of interconnected applications leveraging a common service for 
the ordering of transactions within and between their user bases.
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Abstract. A new system, the Swirlds hashgraph consensus algorithm, is pro-
posed for replicated state machines with guaranteed Byzantine fault tolerance.
It achieves fairness, in the sense that it is difficult for an attacker to manip-
ulate which of two transactions will be chosen to be first in the consensus
order. It has complete asynchrony, no leaders, no round robin, no proof-of-
work, eventual consensus with probability one, and high speed in the absence
of faults. It is based on a gossip protocol, in which the participants don’t
just gossip about transactions. They gossip about gossip. They jointly build a
hashgraph reflecting all of the gossip events. This allows Byzantine agreement
to be achieved through virtual voting. Alice does not send Bob a vote over
the Internet. Instead, Bob calculates what vote Alice would have sent, based
on his knowledge of what Alice knows. This yields fair Byzantine agreement
on a total order for all transactions, with very little communication overhead
beyond the transactions themselves.
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1. Introduction

Distributed databases are often required to be replicated state machines with
Byzantine fault tolerance. Some authors have used the term “Byzantine” in a weak
sense, such as assuming that attackers will not collude, or that communication is
weakly asynchronous [1]. In this paper, “Byzantine” will be used in the strong
sense of its original definition [2]: up to just under 1/3 of the members can be
attackers, they can collude, and they can delete or delay messages between honest
members with no bounds on the message delays. The attackers can control the
network to delay and delete any messages, though at any time, if an honest member
repeatedly sends messages to another member, the attackers must eventually allow
one through. It is assumed that secure digital signatures exist, so attackers cannot
undetectably modify messages. It is assumed that secure hash functions exist, for
which collisions will never be found. This paper proposes and describes the Swirlds
hashgraph consensus algorithm, and proves Byzantine fault tolerance, under the
strong definition.

No deterministic Byzantine system can be completely asynchronous, with un-
bounded message delays, and still guarantee consensus, by the FLP theorem [3].
But it is possible for a nondeterministic system to achieve consensus with prob-
ability one. The hashgraph consensus algorithm is completely asynchronous, is
nondeterministic, and achieves Byzantine agreement with probability one.

Some systems, such as Paxos [4] or Raft [5] use a leader, which can make them
vulnerable to large delays if an attacker launches a denial of service attack on the
current leader [6]. Many systems can even be delayed by just a single bad client
[7]. In fact, the latter paper suggests that systems with such vulnerabilities might
better be described as “Byzantine fault survivable” rather than “Byzantine fault
tolerant”. Hashgraph consensus does not use a leader, and is resilient to denial of
service attacks on small subsets of the members.

Other systems, such as Bitcoin, are based on proof-of-work blockchains [8]. This
avoids all the above problems. However, such systems cannot be Byzantine, because
a member never knows for sure when consensus has been achieved; they only have
a probability of confidence that continues to rise over time. If two blocks are mined
simultaneously, then the chain will fork until the community can agree on which
branch to extend. If the blocks are added slowly, then the community can always
add to the longer branch, and eventually the other branch will stop growing, and can
be pruned and discarded because it is “stale”. This leads to inefficiency, in the sense
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that some blocks are mined properly, but discarded anyway. It also means that it
is necessary to slow down how fast blocks are mined, so that the community can
jointly prune branches faster than new branches sprout. That is the purpose of the
proof-of-work. By requiring that the miners solve difficult computation problems
to mine a block, it can ensure that the entire network will have sufficiently long
delays between mining events, on average. The hashgraph consensus algorithm is
equivalent to a block chain in which the “chain” is constantly branching, without
any pruning, where no blocks are ever stale, and where each miner is allowed to
mine many new blocks per second, without proof-of-work, and with 100% efficiency.

Proof-of-work blockchains also require that electricity be wasted on extra compu-
tations, and perhaps that expensive mining rigs be bought. A proof-of-expired-time
system [9] can avoid the wasted electricity (though perhaps not the cost of mining
rigs) by using trusted hardware chips that delay for long periods, as if they were
doing proof-of-work computations. However, that requires that all participants
trust the company that created the chip. Such trust in chip venders exists in some
situations, but not in others, such as when FreeBSD was changed to not rely solely
on the hardware RDRAND instruction for secure random numbers, because “we
cannot trust them any more” [10].

Byzantine agreement systems have been developed for Byzantine agreement that
avoid the above problems. These systems typically exchange many messages for
the members to vote. For n members to decide a single YES/NO question, some
systems can require O(n) messages to be sent across the network. Other systems
can require O(n2), or even O(n3) messages crossing the network per binary decision
[11]. An algorithm for a single YES/NO decision can then be extended to deciding
a total order on a set of transactions, which may further increase the vote traffic.
Hashgraph sends no votes at all over the network, because all voting is virtual.
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2. Core concepts

The hashgraph consensus algorithm is based on the following core concepts.
• Transactions - any member can create a signed transaction at any time. All

members get a copy of it, and the community reaches Byzantine agreement
on the order of those transactions.

• Fairness - it should be difficult for a small group of attackers to unfairly
influence the order of transactions that is chosen as the consensus.

• Gossip - information spreads by each member repeatedly choosing another
member at random, and telling them all they know

• Hashgraph - a data structure that records who gossiped to whom, and in
what order.

• Gossip about gossip - the hashgraph is spread through the gossip protocol.
The information being gossiped is the history of the gossip itself, so it is
“gossip about gossip”. This uses very little bandwidth overhead beyond
simply gossiping the transactions alone.

• Virtual voting - every member has a copy of the hashgraph, so Alice can
calculate what vote Bob would have sent her, if they had been running
a traditional Byzantine agreement protocol that involved sending votes.
So Bob doesn’t need to actually her the vote. Every member can reach
Byzantine agreement on any number of decisions, without a single vote
ever being sent. The hashgraph alone is sufficient. So zero bandwidth is
used, beyond simply gossiping the hashgraph.

• Famous witnesses - The community could put a list of n transactions into
order by running separate Byzantine agreement protocols on O(n log n)
different yes/no questions of the form “did event x come before event y?” A
much faster approach is to pick just a few events (vertices in the hashgraph),
to be called witnesses, and define a witness to be famous if the hashgraph
shows that most members received it fairly soon after it was created. Then
it’s sufficient to run the Byzantine agreement protocol only for witnesses,
deciding for each witness the single question “is this witness famous?” Once
Byzantine agreement is reached on the exact set of famous witnesses, it is
easy to derive from the hashgraph a fair total order for all events.

• Strongly seeing - given any two vertices x and y in the hashgraph, it can
be immediately calculated whether x can strongly see y, which is defined
to be true if they are connected by multiple directed paths passing through
enough members. This concept allows the key lemma to be proved: that
if Alice and Bob are both able to calculate Carol’s virtual vote on a given
question, then Alice and Bob get the same answer. That lemma forms the
foundation for the rest of the mathematical proof of Byzantine agreement
with probability one.

7 3A P P E N D I C E S



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 5

Alice! Bob! Carol! Dave! Ed!

Time!

Figure 1. Gossip history as a directed graph. The history of any
gossip protocol can be represented by a graph where each member
is one column of vertices. When Alice receives gossip from Bob,
telling her everything he knows, that gossip event is represented
by a vertex in the Alice column, with two edges going downward
to the immediately-preceding gossip events by Alice and Bob.

3. Gossip about gossip: the hashgraph

Hashgraph consensus uses a gossip protocol. This means that a member such
as Alice will choose another member at random, such as Bob, and then Alice will
tell Bob all of the information she knows so far. Alice then repeats with a different
random member. Bob repeatedly does the same, and all other members do the
same. In this way, if a single member becomes aware of new information, it will
spread exponentially fast through the community until every member is aware of
it.

The history of any gossip protocol can be illustrated by a directed graph like
Figure 1. Each vertex in the Alice column represents a gossip event. For example,
the top event in the Alice column represents Bob performing a gossip sync to Alice
in which Bob sent her all of the information that he knew. That vertex has two
downward edges, connecting to the immediately-preceding gossips for Alice and
Bob. Time flows up the graph, so lower vertices represent earlier events in history.
In a typical gossip protocol, a diagram such as this is merely used to discuss the
protocol; there is no actual graph like that stored in memory anywhere.

In hashgraph consensus, that graph is an actual data structure. Figure 2 illus-
trates this data structure. Each event (vertex) is stored in memory as a sequence of
bytes, signed by its creator. For example, one event by Alice (red) records the fact
that Bob performed a gossip sync in which he sent her everything he knew. This
event is created by Alice and signed by her, and contains the hashes of two other
events: her last event and Bob’s last event prior to that gossip sync. The red event
can also contain a payload of any transactions that Alice chooses to create at that
moment, and perhaps a timestamp which is the time and date that Alice claims to
have created it. The other ancestors of that event (gray) are not contained within
it, but are determined by the set of cryptographic hashes. Data structures with
graphs of hashes have been used for other purposes, such as in Git where the ver-
tices are versions of a file tree, and the edges represent changes. But Git stores no
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record of how members communicated. The hashgraph is for a different purpose.
It records the history of how the members communicated.

Gossip protocols are widely used to transfer a variety of types of information.
They can involve gossiping about user identities, or gossiping about transactions, or
gossiping about blockchain blocks, or gossiping about any other information that
needs to be distributed. But what if the protocol were to gossip about gossip?
What if the members were gossiping to transfer the hashgraph itself? When Bob
gossiped to Alice, he would give her all of the events which he knew and she did
not.

Gossiping a hashgraph gives the participants a great deal of information. If a
new transaction is placed in the payload of an event, it will quickly spread to all
members, until every member knows it. Alice will learn of the transaction. And
she will know exactly when Bob learned of the transaction. And she will know
exactly when Carol learned of the fact that Bob had learned of that transaction.
Deep chains of such reasoning become possible when all members have a copy of
the hashgraph. As the hashgraph grows upward, the different members may have
slightly different subsets of the new events near the top, but they will quickly con-
verge to having exactly the same events lower down in the hashgraph. Furthermore,
if Alice and Bob happen to both have a given event, then they are guaranteed to
also both have all its ancestors. And they will agree on all the edges in the subgraph
of those ancestors. All of this allows powerful algorithms to run locally, including
for Byzantine fault tolerance.

This power comes with very little communication overhead. If a community is
simply gossiping signed transactions that they create, there is a certain amount of
bandwidth required. If they instead gossip a hashgraph, and if there are enough
transactions that a typical event contains at least one transaction, then the overhead
is minimal. Instead of Alice signing a transaction she creates, she will sign the
event she creates to contain that transaction. Either way, she is only sending one
signature. And either way, she must send the transaction itself. The only extra
overhead is that she must send the two hashes. But even that can be greatly
compressed. In figure 2, Alice will not send Carol the red event until Carol already
has all its earlier ancestors (either from Alice, or from an earlier sync with someone
else). So Alice does not need to send the two hashes of the two blue parent events.
It is sufficient to tell Carol that this event is the next one by Alice, and that its
other-parent is the third one by Bob. With appropriate compression, this can be
sent in very few bytes, adding only a few percent to the size of the message being
sent.

4. Consensus algorithm

It is not enough to ensure that every member knows every event. It is also
necessary to agree on a linear ordering of the events, and thus of the transactions
recorded inside the events. Most Byzantine fault tolerance protocols without a
leader depend on members sending each other votes. So for n members to agree
on a single YES/NO question might require O(n2) voting messages to be sent over
the network, as every member tells every other member their vote. Some of these
protocols require receipts on votes sent to everyone, making them O(n3). And they
may require multiple rounds of voting, which further increases the number of voting
messages sent.
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Alice! Bob! Carol! Dave! Ed!

Figure 2. The hashgraph data structure. Alice creates an event
(red) recording the occurrence of Bob doing a gossip sync to her
and telling her everything he knows. The event contains a hash of
two parent events (blue): the self-parent (dark blue) by the same
creator Alice, and the other-parent (light blue) by Bob. It also
contains a payload of any new transactions that Alice chooses to
create at that moment, and a digital signature by Alice. The other
ancestor events (gray) are not stored in the red event, but they
are determined by all the hashes. The other self-ancestors (dark
gray) are those reachable by sequences of self-parent links, and the
others (light gray) are not.

Hashgraph consensus does not require any votes to be sent. Every member has a
copy of the hashgraph. If Alice and Bob both have the same hashgraph, then they
can calculate a total order on the events according to any deterministic function of
that hashgraph, and they will both get the same answer. Therefore, consensus is
achieved, even without sending vote messages.

Of course, Alice and Bob may not have exactly the same hashgraph at any given
moment. They will typically match in the older events. But for the very recent
events, each may have events that the other has not yet seen. Furthermore, there
may occasionally be a new event released to the community that should be placed
in a lower (earlier) location in the hashgraph. The hashgraph consensus algorithm
deals with these issue using a system that is best thought of as virtual voting.

Suppose Alice has hashgraph A and Bob hash hashgraph B. These hashgraphs
may be slightly different at any given moment, but they will always be consistent.
Consistent means that if A and B both contain event x, then they will both contain
exactly the same set of ancestors for x, and will both contain exactly the same set
of edges between those ancestors. If Alice knows of x and Bob does not, and both of
them are honest and actively participating, then we would expect Bob to learn of x
fairly quickly, through the gossip protocol. The consensus algorithm assumes that
will happen eventually, but does not make any assumptions about how fast it will
happen. The protocol is completely asynchronous, and does not make assumptions
about timeout periods, or the speed of gossip, or the rate at which progress is made.

Alice will calculate a total order on the events in A by calculating a series of
elections. In each election, some of the events in A will be considered to cast a
vote, and some of the events in A will be considered to receive that vote. Alice will
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(a)! (b)! (c)! (d)!

Figure 3. Illustration of strongly seeing. In each hashgraph, the
yellow event at the top can strongly see one of the orange events
on the bottom row. There are n = 5 members, so the least integer
greater than 2n/3 is 4. In (d), one event (orange) is an ancestor
of each of 4 intermediate events by different creators (red), each
of which is an ancestor of the yellow event. Therefore, the yellow
event can strongly see the orange event. Each of the other hash-
graphs is colored to show the same for a different orange event on
the bottom row, which the yellow event see through at least 4 red
events. If all 4 orange events and both parents of the yellow event
have a created round of r, then yellow is created in round r + 1,
because it can strongly see more than 2n/3 witnesses created by
different members in round r. Note that every event is defined to
be both an ancestor and a self-ancestor of itself.

calculate multiple elections, and a given event might participate in some elections
but not others, and might cast different votes in different elections. If the event
was created by Bob, we will talk of Bob voting a certain way in a given election.
But the actual member Bob is not involved. This is purely a calculation that Alice
is performing locally, where she is calculating what vote Bob would have sent her,
if the real Bob were actually sending votes over the internet to her.

This virtual voting has several benefits. In addition to saving bandwidth, it
ensures that members always calculate their votes according to the rules. If Alice
is honest, she will calculate virtual votes for the virtual Bob that are honest. Even
if the real Bob is a cheater, he cannot attack Alice by making the virtual Bob vote
incorrectly.

Bob can try to cheat in a different way. Suppose Bob creates an event x with a
certain self-parent hash pointing to his previous event z. Then Bob creates a new
event y, but gives it a self-parent hash of z, instead of giving it a self-parent hash of
x as he should. This means that the events by Bob in the hashgraph will no longer
be a chain, as they should be. They will now be a tree, because he has created a
fork. If Bob gossips x to Alice and y to Carol, then for a while, Alice and Carol
may not be aware of the fork. And Alice may calculate a virtual vote for x that is
different from Carol’s virtual vote for y.

The hashgraph consensus algorithm prevents this attack by using the concept
of one state seeing another, and the concept of one state strongly seeing another.
These are based on definitions of ancestor and self-ancestor such that every event
is considered to be both an ancestor and self-ancestor of itself.

If Bob creates two events x and y, neither of which is a self-ancestor of the other,
then Bob has cheated by forking. If some event w has x as an ancestor but doesn’t
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have y as an ancestor, then the event w can see event x. However, if both x and y
are ancestors of w, then w is defined to not see either of them, nor any other event
by the same creator. In other words, w can see x if x is known to it, and no forks
by that creator are known to it.

If there are n members, then an event w can strongly see an event x, if w can see
more than 2n/3 events by different members, each of which can see x. This concept
is illustrated in Figure 3. Four copies of the same hashgraph are shown, each with
a different event on the bottom row colored orange. In (d), the yellow event at the
top can see 4 red events by different members, each of which can see the orange
event at the bottom. This is also true in (a), (b), and (c), with (a) actually having
5 red events. But only 4 are needed for strongly seeing, because this example has
n = 5 members, and the least integer greater than 2n/3 is 4.

This concept allows an agreement protocol to achieve Byzantine fault tolerance
without any actual voting, just through local virtual voting.

In virtual voting, when event x votes on some YES/NO question (e.g., whether
some other event is famous), the vote is calculated purely as a function of the
ancestors of x. That vote is only considered to be sent from x to its descendant
event w if w can strongly see x. It is proved in section 5 that if x and y are on
different branches of an illegal fork, then w can strongly see at most one of x and
y, but not both. Furthermore, if hashgraphs A and B are consistent, then it is not
possible for one event to strongly see x in A and another event strongly see y in
B. That lemma is the cornerstone of the Byzantine proof. It ensures that even
if an attacker tries to cheat by forking, they will still be unable to cause different
members to decide on different orders. Historically, some Byzantine agreement
algorithms have required members to send out “receipts” to everyone for each vote
they receive, to defend against Alice sending inconsistent votes to Bob and Carol.
There are some similarities between that attack and a hashgraph forking attack,
and between the use of receipts and the use of strongly seeing.

Given those definitions, the complete hashgraph consensus protocol can be given
by the algorithms in Figures 4, 5, 6, and 7.

The main algorithm in Figure 4 shows that the communication is very simple:
Alice randomly picks another member Bob, and gossips to him all the events that
she knows. Bob then creates a new event to record the fact of that gossip.

That simple gossip protocol is sufficient for Byzantine Fault Tolerance and cor-
rectness. But it can be extended in various ways to improve efficiency.For example,
Alice and Bob might tell each other which events they already know, then Alice
sends Bob all the events that she knows that he doesn’t. The protocol might re-
quire that Alice send those events in topological order, so Bob will always have an
event’s parents before receiving the event. The protocol might even say that after
Alice syncs to Bob, then Bob will immediately sync back to Alice. Multiple syncs
can happen at once, so Alice might be syncing to several members at the same time
several members are syncing to her. These and other optimizations can all be used,
but this simple one is sufficient.

After each sync, the member calls the three procedures to determine the consen-
sus order for as many events as possible. These involve no communication; purely
local computations are sufficient. In these procedures, each for loop visits events
in topological order, where an event is always visited after its parents. In the first
for loop of the algorithm, if x is the first event in all of history, then it won’t have
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parents or previous rounds, so it should be set to x.round=1 and x.witness=TRUE.
The algorithm also uses a constant n, which is the number of members in the entire
population, and c which is a small integer constant greater than 2, such as c = 10.
In the following algorithm, Byzantine agreement is guaranteed with probability one.

It is useful to define a round number for each event as a function of its ancestors.
In divideRounds (Figure 5), every known event is assigned an integer round number
(definition 5.2) as a function of the round numbers of its ancestors. The hashgraphs
in Figure 3 show how this is done. If all the events on the bottom row were round
r, then all the rest of the events in those figures would also be round r, except for
the yellow event, which would be round r + 1. The yellow event is advanced to the
next round, r + 1, because it is able to strongly see more than 2n/3 events from
round r. The first event in history is defined to be round 1, so all future rounds
are determined by this. Every event will eventually have both a round created and
a round received number. The round created is also called the round or round
number.

For any given member, the first event they create in each round is called a
witness. It is only the witness events that send and receive the virtual votes. This
occurs in the decideFame procedure shown in Figure 6. This procedure is where
the Byzantine agreement occurs. For each witness, it decides whether it is famous.
A witness is famous if many of the witnesses in the next round can see it, and it is
not famous if many can’t. The Byzantine agreement protocol runs an election for
each witness, to determine if it is famous. For a witness x in round r, each witness
in round r + 1 will vote that x is famous if it can see it. If more than 2n/3 agree on
whether it is famous, then the community has decided, and the election is over. If
the vote is more balanced, then it continues for as many rounds as necessary, with
each witness in a normal round voting according to the majority of the witnesses
that it can strongly see in the previous round. To defend against attackers who
can control the internet, there are periodic coin rounds where witnesses can vote
pseudorandomly. This means that even if an attacker can control all the messages
going over the internet to keep the votes carefully split, there is still a chance
that the community will randomly cross the 2n/3 threshold. And so agreement is
eventually reached, with probability one.

In Figure 6, the algorithm would continue to work if the line “if d=1” were
changed to “if d=2”. In that revised algorithm, each election would start one round
later. It would even continue to work if the two were combined in the following
hybrid algorithm. In each round, first run all its elections with the “d=1” check.
If the fame of every witness in that round is decided, and 2n/3 or fewer members
created famous witnesses in that round, then the elections for just that round are
all re-run, using a d = 2 check. For this hybrid algorithm, all of the theorems in this
paper would continue to be true, including the proof of Byzantine Fault Tolerance.
For rounds that trigger the new elections, the time to consensus would increase
slightly (by perhaps 20%). But that would happen very rarely in practice, and
when it did, it might increase the number of famous witnesses, to ensure fairness.

Once consensus has been reached on whether each witness in a given round is
famous, it is then easy to use that to determine a consensus timestamp and a
consensus total order on older events. This is done by procedure findOrder, found
in Figure 7.
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run two loops in parallel:
loop

sync all known events to a random member
end loop
loop

receive a sync
create a new event
call divideRounds
call decideFame
call findOrder

end loop

Figure 4. The Swirlds hashgraph consensus algorithm. Each
member repeatedly calls other members chosen at random, and
syncs to them. In parallel with the outgoing syncs, each member
receives incoming syncs. When Alice syncs to Bob, she sends all
events that she knows that Bob doesn’t. Bob adds these events
to the hashgraph, accepting only events with valid signatures con-
taining valid hashes of parent events he has. All known events
are then divided into rounds. Then the first events by each mem-
ber in each round (the “witnesses”) are decided as being famous
or not, through purely local Byzantine agreement with virtual vot-
ing. Then the total order is found on those events for which enough
information is available. If two members independently assign a
position in history to an event, they are guaranteed to assign the
same position, and guaranteed to never change it, even as more in-
formation comes in. Furthermore, each event is eventually assigned
such a position, with probability one.

First, the received round is calculated. Event x has a received round of r if that
is the first round in which all the unique famous witnesses were descendants of it,
and the fame of every witness is decided for rounds less than or equal to r. (The
set of unique famous witnesses in a round is defined to be the same as the set of
famous witnesses, except that all famous witness from a given member are removed
if that member had more than one famous witness in that round).

Then, the received time is calculated. Suppose event x has a received round of
r, and Alice created a unique famous witness y in round r. The algorithm finds z,
the earliest self-ancestors of y that had learned of x. Let t be the timestamp that
Alice put inside z when she created z. Then t can be considered the time at which
Alice claims to have first learned of x. The received time for x is the median of all
such timestamps, for all the creators of the unique famous witnesses in round r.

Then the consensus order is calculated. All events are sorted by their received
round. If two events have the same received round, then they are sorted by their
received time. If there are still ties, they are broken by simply sorting by signature,
after the signature is whitened by XORing with the signatures of all the unique
famous witnesses in the received round.
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procedure divideRounds

for each event x

r ← max round of parents of x (or 1 if none exist)
if x can strongly see more than 2n/3 round r witnesses

x.round ← r + 1
else

x.round ← r

x. witness ← (x has no self parent )
or (x.round > x. selfParent .round)

Figure 5. The divideRounds procedure. As soon as an event x
is known, it is assigned a round number x.round, and the boolean
value x.witness is calculated, indicating whether it is a “witness”,
the first event that a member created in that round.

5. Proof of Byzantine fault tolerance

This section provides a number of useful definitions, followed by several proofs,
building up from the Strongly Seeing Lemma (lemma 5.12) to the Byzantine Fault
Tolerance Theorem (theorem 5.19). In the proofs it is assumed that there are
n members (n > 1), more than 2n/3 of which are honest, and less than n/3 of
which are not honest. It is also assumed that the digital signatures and crypto-
graphic hashes are secure, so signatures cannot be forged, signed messages cannot
be changed without detection, and hash collisions can never be found. The syncing
gossip protocol is assumed to ensure that when Alice sends Bob all the events she
knows, Bob accepts only those that have a valid signature and contain valid hashes
corresponding to events that he has. The system is totally asynchronous. It is
assumed that for any honest members Alice and Bob, Alice will eventually try to
sync with Bob, and if Alice repeatedly tries to send Bob a message, she will eventu-
ally succeed. No other assumptions are made about network reliability or network
speed or timeout periods. Specifically, the attacker is allowed to completely control
the network, deleting and delaying messages arbitrarily, subject to the constraint
that a message between honest members that is sent repeatedly must eventually
have a copy of it get through.

Definition 5.1. An event x is defined to be an ancestor of event y if x is y, or a
parent of y, or a parent of a parent of y, and so on. It is also a self-ancestor of y if
x is y, or a self-parent of y, or a self-parent of a self-parent of y and so on.

Definition 5.2. The round created number (or round) of an event x is defined to
be r + i, where r is the maximum round number of the parents of x (or 1 if it has
no parents), and i is defined to be 1 if x can strongly see more than 2n/3 witnesses
in round r (or 0 if it can’t).

Definition 5.3. The round received number (or round received) of an event x is
defined to be the first round where all unique famous witnesses are descendants of
x.
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procedure decideFame

for each event x in order from earlier rounds to later
x. famous ← UNDECIDED
for each event y in order from earlier rounds to later

if x. witness and y. witness and y.round>x.round
d ← y.round - x.round
s ← the set of witness events in round

y.round -1 that y can strongly see
v ← majority vote in s (is TRUE for a tie)
t ← number of events in s with a vote of v
if d = 1 // first round of the election

y.vote ← can y see x?
else

if d mod c > 0 // this is a normal round
if t > 2*n/3 // if supermajority, then decide

x. famous ← v
y.vote ← v

break out of the y loop
else // else, just vote

y.vote ← v
else // this is a coin round

if t > 2*n/3 // if supermajority, then vote
y.vote ← v

else // else flip a coin
y.vote ← middle bit of y. signature

Figure 6. The decideFame procedure. For each witness event
(i.e., an event x where x.witness is true), decide whether it is fa-
mous (i.e., assign a boolean to x.famous). This decision is done
by a Byzantine agreement protocol based on virtual voting. Each
member runs it locally, on their own copy of the hashgraph, with
no additional communication. It treats the events in the hashgraph
as if they were sending votes to each other, though the calculation
is purely local to a member’s computer. The member assigns votes
to the witnesses of each round, for several rounds, until more than
2/3 of the population agrees. To find the fame of x, re-run this
repeatedly on the growing hashgraph until x.famous receives a
value.

Definition 5.4. The pair of events (x, y) is a fork if x and y have the same creator,
but neither is a self-ancestor of the other.
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procedure findOrder

for each event x
if there is a round r such that there is no event y

in or before round r that has y. witness =TRUE
and y. famous = UNDECIDED

and x is an ancestor of every round r unique famous
witness

and this is not true of any round earlier than r
then

x. roundReceived ← r
s ← set of each event z such that z is

a self - ancestor of a round r unique famous
witness , and x is an ancestor of z but not
of the self - parent of z

x. consensusTimestamp ← median of the
timestamps of all the events in s

return all events that have roundReceived not UNDECIDED ,
sorted by roundReceived , then ties sorted by
consensusTimestamp , then by whitened signature

Figure 7. The findOrder procedure. Once all the witnesses in
round r have their fame decided, find the set of famous witnesses
in that round, then remove from that set any famous witness that
has the same creator as any other in that set. The remaining
famous witnesses are the unique famous witnesses. They act as
the judges to assign earlier events a round received and consen-
sus timestamp. An event is said to be “received” in the first round
where all the unique famous witnesses have received it, if all earlier
rounds have the fame of all witnesses decided. Its timestamp is the
median of the timestamps of those events where each of those mem-
bers first received it. Once these have been calculated, the events
are sorted by round received. Any ties are subsorted by consensus
timestamp. Any remaining ties are subsorted by whitened signa-
ture. The whitened signature is the signature XORed with the
signatures of all unique famous witnesses in the received round.

Definition 5.5. An honest member tries to sync infinitely often with every other
member, creates a valid event after each sync (with hashes of the latest self-parent
and other-parent), and never creates two events that are forks with each other.

Definition 5.6. An event x can see event y if y is an ancestor of x, and the
ancestors of x do not include a fork by the creator of y.
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Definition 5.7. An event x can strongly see event y if x can see y and there is a
set S of events by more than 2/3 of the members such that x can see every event
in S, and every event in S can see y.
Definition 5.8. A witness is the first event created by a member in a round.
Definition 5.9. A famous witness is a witness that has been decided to be famous
by the community, using the algorithms described here. Informally, the community
tends to decide that a witness is famous if many members see it by the start of
the next round. A unique famous witness is a famous witness that does not have
the same creator as any other famous witness created in the same round. In the
absence of forking, each famous witness is also a unique famous witness.
Definition 5.10. Hashgraphs A and B are consistent iff for any event x contained
in both hashgraphs, both contain the same set of ancestors for x, with the same
parent and self-parent edges between those ancestors.
Lemma 5.11. All members have consistent hashgraphs.
Proof: If two members have hashgraphs containing event x, then they have the same
two hashes contained within x. A member will not accept an event during a sync
unless that member already has both parents for that event, so both hashgraphs
must contain both parents for x. The cryptographic hashes are assumed to be
secure, therefore the parents must be the same. By induction, all ancestors of x
must be the same. Therefore the two hashgraphs are consistent. �

The purpose of the concept of strongly seeing is to make the following lemma true.
This lemma is the foundation of the entire proof, because it allows for consistent
voting, and for guarantees that different members will never calculate inconsistent
results, even with purely virtual voting.
Lemma 5.12 (Strongly Seeing Lemma). If the pair of events (x, y) is a fork, and
x is strongly seen by event z in hashgraph A, then y will not be strongly seen by
any event in any hashgraph B that is consistent with A.
Proof: The proof is by contradiction. Suppose event w in B can strongly see y.
By the definition of strongly seeing, there must exist a set SA of events in A that
z can see, and that all can see x. There must be a set SB of events in B that w
can see, and which all see y. Then SA must contain events created by more than
2n/3 members, and so must SB , therefore there must be an overlap of more than
n/3 members who created events in both sets. It is assumed that less than n/3
members are not honest, so there must be at least one honest member who created
events in both SA and SB . Let m be such a member, and their events qA ∈ SA

and qB ∈ SB . Because m is honest, qA and qB cannot be forks with each other,
so one must be the self-ancestor of the other. Without loss of generality, let qA be
the self-ancestor of qB . The hashgraphs A and B are consistent, and qB is in B, so
its ancestor qA must also be in B. Then in B, x is an ancestor of qA, which is an
ancestor of qB , so x is an ancestor of qB . But y is also an ancestor of qB . So both
x and y are ancestors of qB and are forks of each other, so qB cannot see either
of them. But that contradicts the assumption that qB can see y in B. That is a
contradiction, so the lemma is proved. �

At every moment, all members will have consistent hashgraphs. If two hash-
graphs are consistent, and both contain an event x, then they will both contain the
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same set of ancestors for x. This will cause them to agree on every property of x
that is purely a function of its ancestors. That includes its round created, whether
it is a witness, what events it can see, what events it can strongly see, and how
it will vote in each election (if it’s a witness). For most of these properties, this
follows directly from the definition. The following lemma proves that it is also true
for the round created.

Lemma 5.13. If hashgraphs A and B are consistent and both contain event x,
then both will assign the same round created number to x.

Proof: If the consistent hashgraphs both contain x, then they both contain the
same set of all its ancestors, including the first event in history. Then the proof
is by induction: they agree on the round number of that first event, which is 1 by
definition. And if they both contain an arbitrary state y, and agree on the round
numbers of all its ancestors, then they will agree on the maximum round number
r of the parents of y, and will agree on whether y can strongly see more than 2n/3
witnesses created in round r by different members, and therefore will agree on the
round number of y. Therefore they will agree on the round number of all events
they share, including x. �

Different members may have slightly different hashgraphs, and so may have
slightly different elections. However, all the votes will be consistent. If one hash-
graph shows Alice sending Bob a given vote in a given round for a given election,
then any consistent hashgraph must show either the same vote, or no vote at all
from Alice to Bob in that round. It is impossible for two consistent hashgraphs
to show two different votes for Alice in that round. This is shown in the following
lemma.

Lemma 5.14. If hashgraphs A and B are consistent, and the algorithm running
on A shows that a round r event by member m0 sends a vote vA to member m1 in
round r +1, and the algorithm running on B shows that a round r event by member
m0 sends a vote vB to an event by member m1 in round r + 1, then vA = vB.

Proof: The algorithm only sends a vote from event x to event y if y can strongly see
x. It is not possible for consistent hashgraphs to have two events that are forks of
each other and that are both strongly seen, by the Strongly Seeing lemma (lemma
5.12). Therefore, the two votes must be coming from the same event x in both
hashgraphs. An event’s vote is calculated purely as a function of its ancestors, so
the two hashgraphs must agree on the vote, and vA = vB . �

Byzantine agreement on a particular YES/NO question is achieved by multiple
rounds of virtual voting. A given member will end their election calculations in
round r if it is a normal round (not a coin round) and some round r + 1 event
strongly sees more than 2n/3 of the members voting the same way in round r. If
that happens, then every active member will end their election in round r or r + 1
(or r + 2 if r + 1 is a coin round), and will decide the same way. In other words,
the following lemma proves that if anyone decides on a YES/NO question, then
everyone achieves Byzantine consensus almost immediately thereafter.

Lemma 5.15. If hashgraphs A and B are consistent, and A decides a Byzantine
agreement election with result v in round r and B has not decided prior to r, then
B will decide v in round r + 2 or before.
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Proof: Decisions can’t happen in coin rounds, so r must be a regular round. If A
decides a vote v, that means some witness in round r received votes of v from a set
of members S that contains more than 2n/3 members. Because voting is consistent
(by the previous lemma), all other round r events in A and B will receive votes
from more than 2n/3 members, a majority of whom will also be in S, because
two subsets of size greater than 2n/3 drawn from a set of size n must each have
a majority of their elements in common with the other. Therefore, every round r
witness in both A and B will vote for v (and some may decide v). If round r + 1 is
a regular round, then every event in A and B in that round will receive unanimous
votes of v and will decide v. If round r + 1 is a coin round, then all will receive
unanimous votes of v, so none will flip coins, and all will vote v, and then all will
decide v in round r + 2. �

The following theorem shows that Byzantine fault tolerance is achieved for any
single YES/NO question.

Theorem 5.16. For any single YES/NO question, consensus is achieved eventu-
ally with probability 1.

Proof: If any member decides the question, then all members will decide the same
way within 2 rounds, by the last lemma. So the only way consensus could fail is if
no member ever decides, because no witness ever receives more than 2n/3 matching
votes. However, in a coin round, if such a supermajority has not yet been achieved,
then all the honest members randomly choose their vote, and will have a nonzero
probability of all choosing the same vote. Coin rounds occur periodically forever,
so eventually the honest members will become unanimous, with probability one,
and then consensus will be reached within 2 rounds. �

In the hashgraph consensus algorithm, Byzantine agreement is used to decide
whether each witness in a given round is famous or not. Every round is guaranteed
to have at least one witness that is famous, by the following lemma.

Lemma 5.17. For any round number r, for any hashgraph that has at least one
event in round r+3, there will be at least one witness in round r that will be decided
to be famous by the consensus algorithm, and this decision will be made by every
witness in round r + 3, or earlier.

Proof: Let Sr+3 be a set containing a single witness in round r + 3, in a hashgraph
that has at least one such witness. For each i < r + 3, let Si be the set of all
witnesses in round i that are each strongly seen by at least one witness in Si+1.
It must be the case that 2n/3 < |Si| ≤ n for all i ≤ r + 2, because the existence
of an event in round i + 1 guarantees more than 2n/3 are strongly seen in round
i, and none of the n members can create more than one witness in a given round
that is strongly seen (by the Strongly Seeing lemma, lemma 5.12). Strongly seeing
implies seeing, so each event in Sr+1 sees more than two thirds of the events in
Sr. Therefore, on average, each event in Sr is seen by more than two thirds of
the events in Sr+1. They can’t all be below average, so there must be at least one
event in Sr (call it x) that is seen by more than two thirds of the events in Sr+1.
So more than two thirds of Sr+1 will vote YES in the election for x being famous.
Therefore, every event in Sr+2 will receive more YES votes than NO votes for the
fame of x, and will therefore vote for x being famous (and may or may not decide
that x is famous). Therefore, the event in Sr+3 will receive unanimous votes for
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x being famous, which will cause it to decide that x is famous. Therefore, every
member with an event in round r + 3 will first decide that x is famous in either
round r + 2 or r + 3. �

Lemma 5.18. If hashgraph A does not contain event x, but does contain all the
parents of x, and hashgraph B is the result of adding x to A, and x is a witness
created in round r, and A has at least one witness in round r whose fame has been
decided (as either famous or as not famous), then x will be decided as “not famous”
in B.

Proof: Let w be a witness in A that decided the fame for one of the witnesses in
round r. None of the ancestors of w can see x, because there is no x in A. So
they will also not see x in B, because they have the same ancestors in consistent
hashgraphs. Therefore the ancestors of w that are witnesses in round r + 1 will all
vote NO on the fame of x in B. So an ancestor of w in r + 2 will decide that x is
not famous in B. �

Given the last 3 lemmas/theorems, we know that every round will eventually
have all its witnesses classified as famous or not famous by universal consensus,
with at least one of the witnesses being famous. After that, the set of famous
witnesses for that round will never change, even if more events are added to the
hashgraph. This set of famous witnesses can therefore act as a judge, to define a
total order on all the events that have reached them, and a consensus timestamp
on every event.

Theorem 5.19 (Byzantine Fault Tolerance Theorem). Each event x created by an
honest member will eventually be assigned a consensus position in the total order
of events, with probability 1.

Proof: All honest members will eventually learn of x, by the definition of honest
and the assumptions that the attackers who control the internet must eventually
allow any two honest members to communicate. Therefore, there will eventually
be a round where all the unique famous witnesses are descendants of x. Therefore
in that round, or possibly earlier, there will be a round r where all the famous
witnesses are descendants of x. Then x is assigned a received round of r, and a
consensus timestamp of the median of when those members first received it, and
its consensus place in history will be fixed. Furthermore, it is not possible to later
discover a new event y that will come before x in the consensus order. Because, to
come earlier in the consensus history, y would have to have a received round less
than or equal to r. That would mean that all the famous witnesses in round r must
have received y. But once the set of famous witnesses is known for a round, all of
their ancestors are also known, so there is no way to discover new ancestors for them
in the future as the hashgraph grows. Furthermore, it isn’t possible for a round
to gain new famous witnesses in the future, once the famousness of all the known
witnesses in that round are known. Any new round r witness that is discovered in
the future will not be an ancestor of the known round r + 1 witnesses (of which
there are more than 2n/3), and so the consensus will immediately be reached that
it is not famous. Therefore, once an event is assigned a place in the total order, it
will never change its position, neither by swapping with another known event, nor
by new events being discovered later and being inserted before it. �
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6. Fairness

Most existing systems for distributed consensus can fail to be “fair” in their
consensus ordering of transactions. To see this, first consider a stock market that
is run by a single server. Alice and Bob each submit a bid to that server, with
Alice submitting it just before Bob. If the server is fair, then it will count Alice’s
transaction as occurring before Bob’s. For some applications, the exact order does
not matter, but for a stock market it can be critically important that this decision
be made fairly.

Now consider a distributed peer-to-peer system, where there is no single server,
but there is a community that will reach consensus on whose transaction was first.
It may still be critically important that the consensus decision is fair. But what
should be the definition of “fair”?

The “fair” decision on transaction order could be defined as favoring whichever
transaction was created first. But that would be bad. Alice might have created
her transaction one second before Bob, while she was in a cabin in the woods,
disconnected from the internet. Then the community would only hear of Bob’s
transaction, and would assume that Bob was first. A year later, when Alice finally
emerges from the woods and rejoins the internet, the community would have to
revise history in order to be “fair”. That would cause a host of problems. So that
wouldn’t be an ideal definition of fairness. There needs to be a requirement that
the transaction actually be sent to the community, in order to count as being first.

The “fair” decision could be defined as reflecting the order in which the trans-
actions reached the current leader. But that would also be bad. The leader might
be a member chosen by the Paxos algorithm. Or it might be whichever member
currently has a turn in a round-robin system. In a proof-of-work system, it would
be whichever miner manages to solve a puzzle first. In any case, the leader could
arbitrarily decide to ignore either Alice’s or Bob’s transaction for a period of time,
delaying one of them, to force their transaction to come after the other. If the goal
is distributed trust, then no single individual can be trusted.

The “fair” decision could be defined as reflecting when each transaction first
reached a certain fraction of the entire community. This is a little better. The
community is then ordering transactions by when the transactions first reached a
virtual server, where “reaching the server” means reaching some fraction of the
community as a whole. However, there are still issues. If the fair choice is defined
as whichever transaction reached at least half of the community first, then there
will be problems if Carol saw Alice first, Dave saw Bob first, and everyone else is
evenly split on the question. This fails if Carol and Dave are both attackers who
turn off their computers permanently before telling the community what they saw.
In that case, the community could never reach a fair consensus, because they would
be waiting forever on Carol and Dave to vote.

A better definition might be to say it is “fair” to consider Alice as being first if a
significant fraction of the community received Alice’s transaction before Bob’s, and
that fraction of the community then went on to communicate with most of the others
quickly. Under this definition, if Alice and Bob are releasing their transactions to
the gossip network at almost the same time, and both spread at about the same
rate, then the consensus could go either way, and still be considered fair. However,
if Alice gossips her transaction before Bob, beating him by just over the duration
of a single gossip sync, then it might be expected that as both transactions spread
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exponentially, doubling the number of members reached on each sync, in the end
over 2/3 of the population will hear of Alice before Bob, and less than 1/3 will favor
Bob. So in that case, it would be fair to favor Alice over Bob in the consensus. The
hashgraph consensus algorithm is fair in this sense. The members who are online
and regularly participating will generate a set of events called famous witnesses, and
the consensus decision will be that the “first” transaction is whichever transaction
reached the majority of that set first. If a small set of members are offline, or
are partitioned so that they cannot communicate with the rest, then they will not
have famous witnesses, and so having a transaction reach them will not count as
having reached the community as a whole. But if the members in that set are
communicating with the rest, then they will count as famous witnesses, and they
will help decide who reached “the community” first.

There are attacks against this system that would be not be considered to be
a failure of the consensus system, because they would be equally effective against
a single-server solution. For example, the Byzantine proofs assume the attackers
control the internet, and can delay arbitrary messages. If attackers actually had
that power, they could simply disconnect Alice from the internet for as long as it
takes for Bob to send a transaction and have it recorded. This could be done on the
real internet by launching a denial of service attack, flooding every computer with
packets from Bob in an attempt to prevent Alice from communicating. Of course,
this would also be effective if Alice were communicating with a central server, so it
could be considered more a failure of the internet than a failure of the consensus
system.

Similarly, Bob could gain an advantage over Alice by buying more bandwidth, so
that his gossips reach more people, faster. If he has 8 times the bandwidth of Alice,
so that he can send his transaction initially to 8 members in the time Alice sends
to 1, then he can gain an advantage of the time of about 3 gossip syncs. This is not
considered a failure. If his message actually reaches the world before hers, then he
should have the credit for it. This is similar to the current stock markets, where
companies spend large sums of money for slightly faster connections, in order to
reach the central server faster. So the consensus algorithm would not be considered
“unfair” in this case, because it is behaving the same as a central server.

7. Generalizations and enhancements

7.1. proof-of-stake. So far, it has been assumed that every member is equal. The
above algorithms refer to things depending on “more than 2n/3 of the members”
and “at least half of the famous witness events”. They also use the idea of a
“median” of a set of numbers. The proof shows Byzantine convergence when more
than 2n/3 of the members are honest.

It is easy to modify the algorithm to allow members to be unequal. Each member
can be assumed to have some positive integer associated with them, known as their
“stake”. Then, the votes would be replaced with weighted voting, and the medians
with weighted medians, where votes are weighted proportional to the voter’s stake.
In all of the above definitions, algorithms, and proofs, define “more than 2n/3
members” to mean “a set of members whose total stake is more than 2n/3, where
n is the total stake of all members”. The “median of the timestamps of events in
S” would become “the weighted median of the timestamps in S, weighted by the
stake of the creator of each event in S”. The weighted median can be thought of as
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taking each event y in S, and putting multiple copies of the timestamp of y into
a bag, where the number of copies equals the stake of the member who created y.
Then take the median of the timestamps in the bag.

The Byzantine proof applied as long as the attackers constituted less than 1/3
of the population. With these new definitions, it will now apply when the attackers
together have a stake that is less than 1/3 of the total stake of all members.

This new proof-of-stake system is more general than the unweighted system.
It can still be used to implement the unweighted system, by simply giving every
member a stake of 1. But it can also be used to provide better behavior. For
example, the stake might be proportional to the degree to which a member is
trusted. Perhaps members who have been investigated in some way should be
trusted more than others. Or it could be used to give greater weight to members who
have a greater interest in the system as a whole working properly. A cryptocurrency
might use each member’s number of coins as their stake, on the grounds that those
with more coins have a greater interest in ensuring the system runs smoothly. Or
a community could be started by a group of members with mutual trust, each of
which is given an equal stake. Then, each existing member could be allowed to invite
arbitrarily many new members to join, subject to the constraint that the inviter
must split their stake with the invitee. This would discourage a Sybil attack, where
one member invites a huge number of sock puppet accounts, in order to control the
voting.

The “stake record” is the list of members and the amount of stake owned by each
member. So far, it has been assumed that the stake record is universally known,
and is unchanging. It is easy to relax that assumption.

Assume that there is a particular form of transaction that changes the stake
record. The community might set up rules at the beginning, governing which such
transactions are valid. For example, each member could be allowed to invite other
members, up to a total of at most 10 new members. Or perhaps anyone inviting
a new member must simultaneously give the new member a portion of their own
stake. The validity of such a transaction might depend on the exact order of the
transactions in the consensus order. For example, if the rule is that only one new
member can be invited, and Alice invites Carol at the same time Bob invites Dave,
then then whichever invitation comes first in the consensus order will succeed, and
the other will fail.

All of this can be accommodated. When the consensus algorithm finishes de-
ciding the question of which round r firsts are famous, at that moment it becomes
possible to find exactly which events will have a received round of r, and to calculate
their exact position in the consensus order. At that time, each of the transactions
in those events can be processed, and the rules can be consulted to see which are
valid, and the valid transactions can be applied. This may change the stake record.

If the stake record does change, then the algorithm should be re-run for all
events in round r and later. This may change the calculations of which events are
strongly seen, of event round numbers, of which events are witnesses, and of which
are famous witnesses.

Note that when deciding which round r witnesses are famous, the calculations
are done using the old stake record. The voting for round r may continue several
rounds into the future, all using the old stake record. Once round r is settled, the
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future rounds will reshuffle, and the calculations for round r + 1 famous witnesses
will be done using the new stake record.

This approach allows all members to be in agreement on exactly what stake
record is being used for any given calculation. That ensures that they will always
agree on the results of those calculations. And Byzantine agreement will still be
guaranteed with probability one.

7.2. signed state. Another enhancement to the system is to have signed states.
Once consensus has been reached on whether each witness in round r is famous
or not, a total order can be calculated for every event in history with a received
round of r or less. It is also guaranteed that all other events (including any that
are still unknown) will have a received round greater than r. In other words,
at this point, history is frozen and immutable for all events up to round r. A
member can therefore take all the transactions from those events, and feed them
into a database in the consensus order, and calculate the state that is reached after
processing those transactions. Every member will calculate the same consensus
order, so every member will calculate the same state. This is a consensus state.
Each member can take the hash of this state and digitally sign it, and put the
signature into a new transaction. Soon after, every member will have received by
gossip many signatures for the consensus state. Once signatures are collected from
at least 1/3 of the population, that consensus state, along with the set of signatures,
constitutes a signed state that is an official consensus state for the system at the
start of round r. It can be given to people outside the community, and they can
check the signatures, and therefore trust the state. At this point, a member can
feel free to delete all the transactions that were used to create the state, and delete
all the events that contained those transactions. Only the state itself needs to be
kept. It might be possible to do this every few minutes, so there will never be a
huge number of transactions and events stored. Only the consensus state itself. Of
course, a member is free to preserve the old events, transactions, and states, perhaps
for archive or audit purposes. But the system is still immutable and secure, even
if everyone discards that old information.

Given the assumption that less than 1/3 of the population is dishonest, the signed
state is guaranteed to have at least one honest signature, and so can be trusted to
represent the community consensus, as found by the consensus algorithm. If the
set of members (or their stake) can change over time, then that stake record (and
its history) will also be part of the state. The threshold of 1/3 could be replaced
with something else, such as more than 2/3, and the system would still work.

7.3. Efficient gossip. The gossip protocol makes very efficient use of bandwidth.
Suppose there are enough transactions being created that every event contains
at least one transaction. In any replicated state machine, using a point-to-point
network such as the internet, it will be necessary for each member to receive each
signed transaction once, and to also send each signed transaction on average once.
For the hashgraph gossip, the same is true, except that the signature is for the
event containing the transaction, rather than for the transaction itself. The only
additional overhead is the two hashes and the timestamp, plus the array of counts
at the start of the sync. However, the hashes themselves don’t have to be sent over
the internet. It is sufficient to merely send the identity of the creator of the event,
and the sequence number of its other-parent.

9 1A P P E N D I C E S



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 23

For example, suppose the 100th event created by Alice has an other-parent that
is Ed’s 50th event. If this event by Alice is sent from Bob to Carol during a sync,
Bob could skip sending Carol the two hashes in the event. Instead, he could tell
Carol that this is an event by Alice, and that the other-parent is Ed’s 50th event.
Since Bob is only sending Carol events she doesn’t have according to their initial
counts, Carol will know that this must be Alice’s 100th event, since the last one
she knows about by Alice is Alice’s 99th event. So Bob doesn’t have to send the
hash of that self-parent, and doesn’t have to send the sequence number 100. He
just has to send the fact that it is by Alice. Similarly, he must send that the other-
parent is by Ed, and that it is Ed’s 50th event. So instead of two, large hashes,
Bob is simply sending the triplet (Alice, Ed, 50). With some care, the identities
and sequence numbers can be compressed to a byte or two each, so the triplet will
required only 3 to 6 bytes. This is small overhead compared to the signature (which
is 64 bytes for a 512-bit signature) and the transactions within the event (perhaps
averaging 100 bytes or more). So if each event contains at least one transaction,
then there is almost no overhead for gossiping a hashgraph, beyond simply gossiping
the transactions themselves.

And because voting is virtual, there is no other bandwidth cost at all in order to
achieve consensus. In this sense, the bandwidth required for hashgraph consensus is
very close to the theoretical limit, which would be the bandwidth needed to simply
send the signed and dated transactions themselves.

A system that merely sent the transactions could save bandwidth by not at-
taching timestamps to the transactions, if the application didn’t need timestamps.
Hashgraph consensus can do the same. In that case, the “timestamp” within an
event would simply be an integer that is its self-parent’s “timestamp” plus one.
When Bob sends an event to Carol, that sequence number can be calculated by
Carol, so there is no need for Bob to actually send it over the internet.

A system that only sent transactions could also save bandwidth by grouping
together several transactions by the same creator, and attaching only a single sig-
nature to the list, rather than one per transaction. Hashgraph can do the same,
by putting several transactions into a single event, and so having only a single
signature for the list.

So the bandwidth requirements of hashgraph consensus are very close to the
theoretical minimum in all cases.

7.4. Fast elections. That second part of the algorithm is a Byzantine agreement
step for deciding fame. It has an interesting property. When a group of members are
all online and all participating regularly, the Byzantine agreement will be applied
to a set of elections where almost all the voters start with identical votes. That is
because a round r + 1 witness will strongly see many of the round r witnesses, so a
round might be expected to last about two “gossip periods”, where a gossip period
is the time it takes for a message to propagate through the entire community. This
should be the time to do log2(n) syncs, when there are n members online. For a
round r + 1 witness x to vote YES on the fame of a round r witness y, it isn’t
necessary for x to strongly see y. It can merely see y. It would be expected that
y would propagate to all the online members in a single gossip period. So there
is an overwhelmingly high probability it will propagate to them within two gossip
periods. So in practice, when everyone is online and participating, the fame of

9 2A P P E N D I C E S



24 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

witnesses is almost always decided immediately, without the need for many rounds
of voting.

Similarly, if y is a round r witness, but was created by a member who was asleep
and then awoke just before the end of round r , then it is likely that almost all
round r+1 witnesses will vote NO on y, and the election will again end immediately.
There is a small window of time, on the order of the duration of a single sync, in
which a member awakening and creating y can cause the round r + 1 witnesses
to start with a close to even vote split. If the online members are all choosing
each other randomly and syncing frequently, then such a result will converge to a
decision in about 3 rounds, with a probability of only a few percent for more than 3
rounds, and of less than a tenth of a percent for more than 6 rounds. If an attacker
completely controls the internet, they can cause this to drag on for exponentially
many rounds. This can be reduced to a constant expected number of rounds by
using a cryptographic “shared coin” protocol, rather than the “middle bit of the
signature” described in the above algorithm. The middle bit is intended to be like
each member having an independent random coin flip that the attacker couldn’t
predict ahead of time. A shared coin protocol is the same, but ensures all members
end up with the same “random” result. This addition would reduce the theoretical
worst-case expected time. But such an addition seems unlikely to be worth the
effort in practice. If an attacker can truly control the internet enough to keep the
honest members from synching randomly with each other for a long period, then
the attacker likely has the power to simply block the honest users from accessing
the internet at all. So a shared coin seems to be of only theoretical interest here.
But using a shared coin is always an option.

7.5. Efficient calculations. The first part step of the algorithm is to assign a
round of either r or r + 1 to an event, based on whether it can strongly see enough
round r events. So it is necessary to calculate whether a round r witness event x
can be strongly seen by an arbitrary event y. The following is one way to calculate
that answer.

Give each event a sequence number that is one greater than the sequence number
of its self-parent. Store an array for y and an array for x. The y array remembers
the sequence number of the last event by each member that is an ancestor of y. The
array for x remembers the sequence number of the earliest event by each member
that is a descendant of x. Compare the two arrays, and find how many elements in
the y array are greater than or equal to the corresponding element of the x array. If
there are more than 2n/3 such matches, then y strongly sees x. The comparison of
the x and y arrays can be sped up by multithreading (to use more cores), packing
multiple elements into one integer (to use the ALU more efficiently), using assembly
language (to access the CPU vector instructions) or using the GPU (for more vector
parallelism).

8. Conclusions

A new system has been presented, based on the Swirlds hashgraph data struc-
ture, and the Swirlds hashgraph consensus algorithm. It is fair, fast, Byzantine
fault tolerant, and extremely bandwidth efficient due to virtual voting. The algo-
rithm is given in pseudocode in the figures, using an imperative language, but it
is also very natural to describe it in a functional form. The appendix gives the
algorithm in a functional form, which is concise, and may be of interest.

9 3A P P E N D I C E S



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 25

References
[1] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of

the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages
173–186, Berkeley, CA, USA, 1999. USENIX Association.

[2] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[3] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[4] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998.

[5] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 305–319, Philadel-
phia, PA, June 2014. USENIX Association.

[6] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft
protocols. Cryptology ePrint Archive, Report 2016/199, 2016. http://eprint.iacr.org/.

[7] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. Making
byzantine fault tolerant systems tolerate byzantine faults. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, NSDI’09, pages 153–168,
Berkeley, CA, USA, 2009. USENIX Association.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. posted to the internet
November, 2008, 2008. http://bitcoin.org/bitcoin.pdf.

[9] Giulio Prisco. Intel develops ‘Sawtooth Lake’ distributed ledger technology for the Hyper-
ledger project. Bitcoin Magazine, April 2016.

[10] Dag-Erling Smorgrav. FreeBSD quarterly status report. Posted on FreeBSD.org, 2013. http:
//www.freebsd.org/news/status/report-2013-09-devsummit.html#Security.

[11] Miguel Miguel Correia, Giuliana Santos Veronese, Nuno Ferreira Neves, and Paulo Veris-
simo. Byzantine consensus in asynchronous message-passing systems: a survey. International
Journal of Critical Computer-Based Systems, 2(2):141–161, 2011.

9 4A P P E N D I C E S



26 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

9. Appendix A: Consensus algorithm in functional form

An event is a tuple e = {p, h, t, i, s} where:

p = payload(e) = the “payload” data, such as a list of transactions
h = hashes(e) = a list of hashes of the event’s parents, self-parent first
t = time(e) = creator’s claimed date and time of the event’s creation
i = creator(e) = creator’s ID number
s = sig(e) = creator’s digital signature of {p, h, t, i}

parents(x) = set of events that are parents of event x
selfParent(x) = the self-parent of event x, or ∅ if none

n = the number of members in the population
c = frequency of coin rounds (such as c = 10)
d = rounds delayed before start of election (such as d = 1)
E = the set of all events in the hashgraph

E0 = E ∪ {∅}
T = set of all possible (time, date) pairs
B = {true, false}
N = {1, 2, 3, ...}

parents : E → 2E

selfParent : E → E0
ancestor : E × E → B

selfAncestor : E × E → B
manyCreators : 2E → B

see : E × E → B
stronglySee : E × E → B

parentRound : E → N
roundInc : E → B

round : E → N
witness : E → B

diff : E × E → I
votes : E × E × B → N

fractTrue : E × E → R
decide : E × E → B

copyVote : E × E → B
vote : E × E → B

famous : E → B
uniqueFamous : E → B
roundsDecided : N → B
roundReceived : E → N

timeReceived : E → T
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ancestor(x, y) = x = y ∨ ∃z ∈parents(x), ancestor(z, y)

selfAncestor(x, y) = x = y ∨ (selfParent(x) �= ∅ ∧ selfAncestor(selfParent(x), y))

manyCreators(S) = |S| > 2n/3 ∧ ∀x, y ∈ S, (x �= y =⇒ creator(x) �= creator(y))

see(x, y) = ancestor(x, y) ∧ ¬(∃a, b ∈ E, creator(y) = creator(a) = creator(b)∧
ancestor(x, a) ∧ ancestor(x, b) ∧ ¬ selfAncestor(a, b) ∧ ¬ selfAncestor(b, a))

stronglySee(x, y) = see(x, y) ∧ (∃S ⊆ E, manyCreators(S)
∧(z ∈ S =⇒ (see(x, z) ∧ see(z, y))))

parentRound(x) = max({1} ∪ {round(y) | y ∈parents(x)})

roundInc(x) = ∃S ⊆ E, manyCreators(S)
∧(∀y ∈ S, round(y) = parentRound(x) ∧ stronglySee(x, y))

round(x) = parentRound(x) +
{

1 if roundInc(x)
0 otherwise

witness(x) = (selfParent(x) = ∅) ∨ (round(x) > round(selfParent(x))

diff(x, y) = round(x) − round(y)

votes(x, y, v) = |{z ∈ E | diff(x, z) = 1 ∧ witness(z)∧ stronglySee(x, z) ∧ vote(z, y) = v}|

fractTrue(x, y) = votes(x,y,true)
(votes(x,y,true)+votes(x,y,false))

decide(x, y) = (selfParent(x) �= ∅ ∧ decide(selfParent(x), y)) ∨(witness(x) ∧ witness(y)
∧ diff(x, y) > d ∧ (diff(x, y) mod c > 0) ∧ (∃v ∈ B, votes(x, y, v) > 2n

3 )))

copyVote(x, y) = (¬ witness(x)) ∨ (selfParent(x) �= ∅ ∧ decide(selfParent(x), y)

vote(x, y) =





vote(selfParent(x), y) if copyVote(x)
see(x, y) if ¬ copyVote(x) ∧ diff(x, y) = d

1 = middleBit(signature(x)) if ¬ copyVote(x) ∧ diff(x, y) �= d

∧ (diff(x, y) mod c = 0)
∧ ( 1

3 ≤ fractTrue(x, y) ≤ 2
3 )

fractTrue(x, y) ≥ 1
2 otherwise

famous(x) = ∃y ∈ E, decide(y, x) ∧ vote(y, x)

uniqueFamous(x) = famous(x) ∧ ¬∃y ∈ E, y �= x ∧ famous(y)
∧ round(x) = round(y) ∧ creator(x) = creator(y)

roundsDecided(r) = ∀x ∈ E, ((round(x) ≤ r ∧ witness(x)) =⇒ ∃y ∈ E, decide(y, x))

roundReceived(x) = min({r ∈ N | roundsDecided(r) ∧ (∀y ∈ E,
(round(y) = r ∧ uniqueFamous(y)) =⇒ ancestor(y, x)

timeReceived(x) = median({time(y) | y ∈ E ∧ ancestor(y, x)∧
(∃z ∈ E, round(z) = roundReceived(x) ∧ uniqueFamous(z)
∧ selfAncestor(z, y}) ∧ ¬(∃w ∈ E, selfAncestor(y, w) ∧ ancestor(w, x))})
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