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Abstract

We design a two-stage protocol for auc-
tioning multiple, homogeneous digital
goods with no marginal cost. The diffi-
culty of designing protocols for such goods
lies in determining the number of goods to
be auctioned. In the first stage of our pro-
tocol, every bidder submits bids, and half
of the number of bids is set as the number
of auctioned goods. In the second stage, a
uniform price, ascending auction protocol
is conducted. We explain the intent of this
design and report the results of our real
use.

Keywords: Ascending auction, Uniform
pricing, Digital goods, Blockchain, Non-
fungible token.

1 Introduction

In the traditional practice of auctions, the
number of auctioned goods has been ex-
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ogenously given. Such a number is nat-
urally determined by resource constrains.
For example, artwork such as paintings or
statues uniquely exists, and the amount of
treasury bonds is determined by the issu-
ing government. However, this is not the
case with digital goods. A seller can pro-
duce any number of digital goods at virtu-
ally no marginal cost. This freedom raises
a difficult question: how many of the goods
are to be produced? In an ideal case with
perfect information, a monopolistic seller
can select a quantity q∗ that maximizes
revenue q · P (q), where P (q) denotes the
market price at the total supply q. How-
ever, the form of P is unknown when the
goods are new items in a marketplace. We,
in Gaudiy Inc., were faced with this design
problem when we constructed a primary
market for blockchain game cards. The
cards are non-fungible tokens (NFTs) with
no material form. They can be produced
at zero marginal cost.

In the literature of algorithmic mecha-
nism design, a random sampling approach
has been proposed for auctioning digital
goods (Goldberg and Hartline 2001). Its
procedure consists of dividing a set of bid-
ders into two groups, implementing the
Vickrey auction in each of the groups, and
exchanging two Vickrey prices from one
group to another.1 We did not employ this

1An obtained Vickrey price in Group A is used
in Group B while an obtained Vickrey price in
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approach because of three concerns. First,
the Vickrey auction often yields low rev-
enue in multi-item auctions (Engelbrecht-
Wiggans and Kahn 1998). Second, our
participants appear not to prefer the idea
of exchanging two prices. Third, the law of
one price is not respected because bidders
are separated. Blockchain game cards are
often sold in a secondary market, and the
multiplicity of prices in our primary mar-
ket makes the finding of a reasonable price
in a secondary market difficult. In sum-
mary, we needed an auction protocol that
gives everyone the same price and yields a
satisfactory amount of revenue.

We developed a novel, two-stage ascend-
ing auction protocol with endogenous de-
termination of a supply amount. We used
it for selling digital cards in an auction that
was held for seven days. Any participant
can submit at most two bids and raise the
bids any time. At the end of the sixth
day, half of the number of the submitted
bids, say Q, is determined to be the num-
ber of the auctioned goods. On the sev-
enth day, participants seriously start rais-
ing their bids. At the end of this day,
the auction ends; Q bids from above win
goods, and Q + 1-th highest bid becomes
the uniform price. Any winning bid that
was initially submitted in the first six days
gets a 10% discount coupon.2 The coupon
is to encourage participants to submit ini-
tial bids in the first six days. We term this
protocol Gaudiy-Sakai two-stage protocol.

Group B is used in Group A. By doing so, the
amount of auctioned items is endogenously deter-
mined in the auction.

2This coupon is valid if an initial bid is updated
at any point in the remaining auction period.

2 Model

2.1 Basic definitions

Let I be the set of participants.3 Any
participant i ∈ I is associated with a
two-dimensional valuation vector vi =
(vi1, vi2) ∈ R2

+, which is private informa-
tion. When i wins no good with no pay-
ment, his utility is zero; when he wins one
good with paymentm, his utility is vi1−m;
and when i wins two goods with payment
m, his utility is vi1 + vi2 − m. A partici-
pant i ∈ I is said to have a unit demand if
vi2 = 0.

Let v = (vi)i∈I be a profile of valuation
vectors. Because our auction is held for
seven days, the set of times is given by T =
[0, 7]. A bid vector of i ∈ I at time t ∈ T
is

bti = (bti1, b
t
i2) ∈ R2

+, (1)

and we assume that b0i1 = b0i2 = 0 and
bti1 ≥ bti2 for all t ∈ T . Let bt = (bi)

t
i∈I

be a profile of bid vectors at t. Because we
do not allow withdrawal, any btik is weakly
increasing with respect to t. For any inte-
ger Z, bt[Z] denotes the Z-th highest value
among all 2 · |I| bids at t.

2.2 Protocol

Any participant can submit and raise at
most two bids during the auction period
of seven days.

First stage. This consists of the first six
days. Any participant can submit at most
two bids and raise bids anytime. The min-
imum amount of bids is set at 500 yen,
and a bid btik is valid if btik ≥ 500. Let

3In our practice, any participant is identified
with an account, which requires an SMS identifi-
cation.
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b6 = (b6i1, b
6
i2)i∈I be the profile of bid vec-

tors at the end of the sixth day. The num-
ber of valid bids at b6 is

|{(i, k) ∈ I × {1, 2} : b6ik ≥ 500}|, (2)

and its half, rounded up when it is odd, is

Q(b6) = ⌈
|{(i, k) ∈ I × {1, 2} : b6ik ≥ 500}|

2
⌉.

(3)

Additionally, an upper bound M is im-
posed by the publisher of the game to keep
the blockchain game of the cards balanced.
The number of the auctioned cards is set
to be

Q̄(b6,M) = min{Q(b6),M}. (4)

The number Q̄(b6,M) is announced to
the participants through their computer
display. For notational simplicity, when
there is no danger of confusion, we denote
Q̄(b6,M) by Q.

Second stage. This only includes the sev-
enth day. Participants who have already
submitted bids at the first stage can raise
their bids. New participants can also sub-
mit and raise bids. At any time t ≥ 6, the
temporary price at t is

p(bt) = bt[Q+ 1]. (5)

If a participant wishes to raise his bid on
this day, his bid must be equal or greater
than p(bt) plus 500, i.e., 500 yen is the min-
imum incrementation amount.
At the end of the seventh day, the auc-

tion ends; Q(b6) bids from above become
the winning bids and the uniform, the ex-
ecution price is set as Q + 1-th bid; that
is,

p(b7) = b7[Q+ 1], (6)

where b7[Q+1] denotes theQ+1-th highest
bid, which is the highest losing bid.
Any winning bid that was initially sub-

mitted at the first stage gets a 10% dis-
count coupon. For example, if a partici-
pant wins two goods, with one bid initially
submitted at the first stage, with the other
bid not, he has to pay

0.9 · p(b7) + p(b7) = 1.9 · p(b7). (7)

For any i ∈ I, b7i is said to be optimal
at the second stage if for every b̃7i and ev-
ery b7−i = (b7j )j ̸=i, his utility from obtained

goods minus payment at (b7i , b
7
−i) is weakly

greater than that at (b̃7i , b
7
−i).

Before the auction, we explained all
these rules to potential participants via a
text website and video. To the best of
our understanding, there was no confusion
about the rules.

3 Properties

We summarize the intent of our auction
design.

Fairness. Because our protocol satisfies
the law of one price, it respects the princi-
ple of fairness that every two winners who
purchase the same amount of goods pay
the same amount of money. The unique-
ness of the price in the primary market
is useful in the secondary market where
traders need to find a reasonable price.

Incentives. Incentive compatibility is not
fully satisfied. This is because our “next-
price” format is not incentive compatible
for a multi-demand bidder (Engelbrecht-
Wiggans and Kahn 1998).
Let us say that (bti)t∈T is constant if

b0i = b7i . The following example shows
that truth-telling is not always profitable
to participants.
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Example 1 (Truth-telling is not al-
ways profitable). Let I = {1, 2, 3, 4},
v1 = (10, 8), v2 = (10, 2), v3 = (7, 0), and
v4 = (2, 0). Suppose that every partic-
ipant takes a truth-telling, constant bid.
Then three goods are determined to be
auctioned at the end of the first stage. At
the end of the second stage, participant 1
obtains two goods, pays 7+7, and his util-
ity is 10 + 8− (7 + 7) = 4.
Consider participant 1’s constant bid

(b̃t1)t∈T with b̃t1 = (10, 1). If any j ̸= 1
takes his truth-telling, constant bid and
participant 1 takes (b̃t1)t∈T , then three
cards are auctioned, the uniform price is
p = 2, and participant 1 obtains one
good. Then participant 1’s utility is 10-
2=8, which is higher than 4. Therefore
this deviation is profitable to him. □

However, our protocol satisfies certain
nice properties on incentives. For example,
it is more beneficial for winners if his bids
were submitted at the first stage because
of the coupon. Furthermore, our proto-
col is fully incentive compatible for a unit
demand participant at the second stage;
that is, truth-telling is his dominant strat-
egy. This property is an immediate conse-
quence of the fact that for such a bidder,
our protocol at the second stage is essen-
tially equivalent to the Vickrey auction.
A non-essential difference from the Vick-
rey auction is that a dominant strategy is
10
9 vi1, not vi1 itself, because of the coupon.
This, in turn, ensures that the seller does
not lose revenue by giving coupons. We
summarize these facts on incentives in the
following propositions.

Proposition 1 (Optimal bids at the
second stage). Consider any unit de-
mand participant i. If i has submitted a
bid at the first stage, then b7 = (109 vi1, 0) is
his optimal bid at the second stage. Other-

wise, b7 = (vi1, 0) is his optimal bid at the
second stage.

Proof. It is well known that our dynamic,
uniform price auction for multiple goods
can be identified with the static, next price
auction (see, for example Krishna 2009).
Under the next price auction, truth-telling
is a dominant strategy of any unit demand
participant i. Therefore if i who has not
submitted a bid at the first stage, his opti-
mal bid at the second stage is b7 = (vi1, 0).
If i has submitted one bid at the first stage,
then his utility from the first good minus
payment is v7i1 − 0.9p, which is positive as
long as p > 10

9 vi1. Noting this fact and ap-
plying the standard argument on strategy-
proofness of the second price auction, one
can easily verify that (109 vi1, 0) is i’s opti-
mal bid at the second stage.

Proposition 2 (Incentives to bid at
the first stage). (i) If a participant wins
goods, then he is more beneficial in the case
that his winning bids were initially submit-
ted at the first stage than in the case that
the bids are not so; (ii) If 10

9 vi1 > vj1 >
vi1, then it is possible that i, j take their
optimal bids at the second stage, i wins,
but j loses. This “reversal” occurs when i
submits his initial bid at the first stage, but
j does not.

Proof. The first part is trivial. Let us
prove the second part. Suppose that
10
9 vi1 > vj1 > vi1. Consider the case
that i submits a initial bid at the first
stage, but j does not. Let b7i1 = 10

9 vi1 and
b7j1 = vj1. By Proposition 1, these bids are
optimal bids at the second stage for i, j.
Let (b7h)h̸=i,j be such that the highest los-
ing bid p at b7 = (b7i , b

7
j , (b

7
h)h̸=i,j) satisfies

10
9 vi1 > p > vj1. Then i wins a good but j
does not.
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Smooth ending. Under many protocols
of ascending auctions, a considerable num-
ber of last-minute pushes were observed
in bidding. Such congestion hurts rev-
enue and efficiency. To avoid it, some
devices such as the activity rule and the
10-minutes rule are often employed (Mil-
grom 2004; Roth and Ockenfels 2002).
In particular, we were concerned about
programmed “bot” bidders who endlessly
raise bids by a small incrementation. How-
ever, under our next-price design, partici-
pants do not have to do such bidding, be-
cause bidding high does not imply pay-
ing high; participants only need to pay
the highest losing bid. Therefore we need
not to employ the activity rule nor the
ten-minutes rule, which simplified coding
and eliminated any trouble caused by ad-
ditional ending rules.

4 Results

The auction was held from March 6 to 13,
2020. The minimum bid is set to be 500
yen. When a participant wishes to update
his bid and the temporary price is p, the
updated bid must be at least p+500; that
is, an incrementation of 500 yen is required
to accelerate an ascending process.

First stage. 258 bids were submitted by
148 participants, and the upper bound was
set to be M = 150. Therefore

Q(b6) = ⌈258
2

⌉ = 129, (8)

Q̄(b6,M) = min{129, 150} = 129, (9)

p(b6) = 2, 398. (10)

The distribution of the initial bids in
seven days is given in Table 1:

There was no last-minute rush at the
end of the first stage. The final update

Day Bids

1st 113
2nd 31
3rd 36
4th 26
5th 25
6th 28

First stage 258

7th 13

Total 271

Table 1: The number of new bids at each
day

was done about seven minutes before the
end of the first stage.

Second stage. Only 13 new bids are
submitted by 10 participants. Therefore,
throughout the auction process, 258 of the
271 bids, 148 of 158 participants, entered
at the first stage. The ratios of new bids
and participants exceed 95% and 93%, re-
spectively. Hence we consider that the
10% discount coupon incentivised partic-
ipants to submit bids at the first stage.
The execution price, which is the 130th

highest of all bids, is p(b7) = 9, 000 yen.
Since the starting price on the seventh day
is p(b6) = 2, 398 yen, stringent competi-
tion occurred. Finally, 129 cards are sold
to 76 winners, which means that winners
obtained 129

76 ≈ 1.7 cards on average.4 We
have observed that sufficiently many fi-
nal bids exist around 9,000, which means
that demand reduction did not occur in
our auction.5 In fact, as long as there are
Q + 1 high final bids, demand reduction

4Demand reduction is a phenomenon where
many participants underbid the second good,
which yields an unacceptably low price. See
Ausubel et. al. (2014).

512 final bids are distributed from 8,000 to
9,000.
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does not occur, or at least it does not hurt
prices. Because of this, our limitation of
the supply amount contributed in avoid-
ing demand reduction.

The following example provides a situa-
tion where the supply amount is not lim-
ited in the sense that the number of partic-
ipants is equal to the number of auctioned
goods, and demand reduction occurs.

Example 2. (Demand reduction
when there are many goods) Let
I = {1, 2, 3, 4}, v1 = (10, 10), v2 = (10, 1),
v3 = (10, 1), and v4 = (9, 1), where five
“10, 9” are high valuations, and each of
the four participants has at least one high
valuation.

Consider the profile of constant bids
((bti)t∈T )i∈I such that bt1 = (10, 1), bt2 =
(10, 1), bt3 = (10, 1), and bt4 = (9, 1). At
this profile, Q = 4 cards are to be auc-
tioned, and everyone obtains one card and
pays p = 1. Therefore this is a situation
of demand reduction. We shall show that
(b7i )i∈I , which yields this demand reduc-
tion, is a “low-price” Nash equilibrium at
t = 7.

In this stuatin, everyone obtains a posi-
tive utility, so that no one has an incentive
to change his bid to any other bid that
makes him obtain no good. If a partici-
pant i changes his bid but still can obtain
one good, then the uniform price continues
to be p = 1, so that this change is not prof-
itable to i. Furthermore, if a participant
i changes his bid and obtains two goods,
the price will be p = 9, which decreases
his utility. Therefore no profitable devia-
tion is possible to everyone. □

The average winning bid is 13,596
yen.6 The seller’s revenue is 9,000 yen ×

6We drop one outlier value of 347,904 yen in
this calculation.

129=1,161,000 yen. Although we do not
have an evidence that this amount of rev-
enue is fully maximized, it is fairly satis-
factory and much more than expected. We
consider that competitiveness at the sec-
ond stage was the source of this success,
which is realized by the limitation of the
supply amount.

We are highly interested in understand-
ing whether there was any last-minute
rush. The auction closed on 22:00 on the
seventh day, and the distribution of the
number of updating bids in the last 20 min-
utes is summarized in Table 2.

Time Updates Time Updates

21:40 8 21:50 9
21:41 2 21:51 5
21:42 1 21:52 3
21:43 2 21:53 6
21:44 3 21:54 5
21:45 3 21:55 4
21:46 4 21:56 3
21:47 7 21:57 7
21:48 7 21:58 7
21:49 3 21:59 5

Table 2: Number of bid updates at each
time of the last 20 minutes of the seventh
day

No last-minute rush was observed. We
have statistically examined if there is any
significant difference between the number
of raising bids from 21:40 to 21:49 and that
from 21:50 to 21:59. The Wilcoxon rank
sum test does not reject the hypothesis
that the two groups are from the same dis-
tribution with 5%.
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5 Conclusion

We have designed and implemented a new
auction protocol for digital goods. The
main feature of the protocol is a two-stage
design. The first stage is for an endoge-
nous determination of the supply amount,
and the second stage is for competition.
The observed competitiveness seems to be
the consequence of our way of controlling
the supply amount, and we are unsure of
other good alternatives. Virtues of this
protocol include the respect of the law of
one price, certain incentive properties, and
absence of last-minute rush. Gaudiy Inc.
plans to continue using this auction pro-
tocol and believes that it will be one of
the standard protocols for auctioning dig-
ital goods. Further reports on our real use
will be presented in future.
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